CN107390525B - 一种应用于混联机构的控制***参数整定方法 - Google Patents

一种应用于混联机构的控制***参数整定方法 Download PDF

Info

Publication number
CN107390525B
CN107390525B CN201710624717.7A CN201710624717A CN107390525B CN 107390525 B CN107390525 B CN 107390525B CN 201710624717 A CN201710624717 A CN 201710624717A CN 107390525 B CN107390525 B CN 107390525B
Authority
CN
China
Prior art keywords
loop
controller
speed
parameter
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710624717.7A
Other languages
English (en)
Other versions
CN107390525A (zh
Inventor
吴军
***
张彬彬
王冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710624717.7A priority Critical patent/CN107390525B/zh
Publication of CN107390525A publication Critical patent/CN107390525A/zh
Application granted granted Critical
Publication of CN107390525B publication Critical patent/CN107390525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种应用于混联机构的控制***参数整定方法,主要涉及闭环反馈控制器与前馈补偿器组成的控制***的参数整定方法。该方法是在对闭环反馈控制器的参数进行设计之后,采用前馈补偿器对闭环反馈控制的误差进行补偿。对前馈补偿器进行等效分析,分解为加速度项、速度项和位置项三部分。针对可求解动力学方程机构和无法求解动力学方程机构等两类情况,给出了相应的参数设计方法。对于第一种情况,基于动力学模型和前馈补偿器之间的映射关系对控制参数进行设计,可获得更高的控制精度;对于第二种情况,采用最佳拟合曲线的方法对控制参数进行设计,其控制精度与第一种情况的精度相差不大,但可应用在无法求解动力学模型的机构中,更具实际意义。

Description

一种应用于混联机构的控制***参数整定方法
技术领域
本发明涉及一种应用于混联机构的控制***参数整定方法,具体涉及闭环反馈控制器与前馈补偿器组成的控制***的参数设计问题,属于机电控制技术领域。
背景技术
混联机构是结合串联机构和并联机构的一种新型机构,其具有串联机构工作空间大,结构简单的优点,且具有并联机构动力学性能好,无积累误差,刚度质量比大等优势。然而,混联机构在较大的工作空间内运动时,其惯量会发生较大波动,从而导致各驱动轴的动态负载发生显著的变化。同时由于混联机构的动力学特性具有高度的非线性和耦合性,每个驱动轴在运动时,会受到其他驱动轴的运动影响。当机构以较高速度和加速度运动时,其动力学特性对机构运动的影响就更为显著,进而导致机构的运动精度低。为了改善混联机构的控制精度,减少其动力学特性对运动的影响,目前工业中普遍采用由闭环反馈控制器与前馈补偿器组成的动力学前馈控制方法,其对动力学模型精度要求较低,是混联机构的一种主要控制方法。
伺服控制***的性能与其控制参数密切相关,为了获得满意的控制效果与伺服性能,必须对控制参数进行整定与优化。目前工业上对于机构伺服控制参数的设计,主要依靠工程师的调试经验,通过单轴实验对速度、加速度前馈系数进行调试以实现动力学前馈补偿。但是该方法没有考虑机构的动力学特性,无法在整个工作空间内均取得理想的补偿效果。
目前还没有一套考虑混联机构复杂动力学特性的控制器参数调试方法。因此,针对混联机构强耦合和非线性的动态特性,提出一种应用于混联机构的控制***参数整定方法具有重要意义。
发明内容
本发明的目的是提供一种应用于混联机构的控制***参数整定方法,主要用来解决现有商业控制器调试方法中存在的低效率反复试凑,没有考虑机构的动力学特性,最终导致机构运动精度较低的问题。
本发明的技术方案如下:
一种应用于混联机构的控制***参数整定方法,所述的控制***包括闭环反馈控制器和前馈补偿器两部分,其特征在于,所述方法包括如下步骤:
1)采用工程凑试法或图谱法对闭环反馈控制器的控制参数进行整定;
2)对闭环反馈控制器中的输入信号和输出信号进行分析,得到控制***的误差方程:
E(s)=R(s)-C(s)
式中,E(s)表示控制器的误差信号,R(s)表示控制器输入信号,C(s)表示控制器输出信号;
3)对控制器的误差信号进行分析,令误差方程为零,即:
E(s)=0
求解第一速度前馈补偿参数Kvff′和第一加速度前馈补偿参数Kaff′;
4)根据等效原理,将前馈补偿器等效分解为加速度项,速度项和位置项三部分;
5)根据混联机构能否推导得到显式动力学方程,采用如下两种方法求解第二速度
前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″:
a)若混联机构能够推导得到显式动力学方程,其动力学方程如下:
Figure GDA0002369790040000021
其中,τ为混联机构运动的驱动力;X,
Figure GDA0002369790040000022
Figure GDA0002369790040000023
分别是被控机构的各个驱动轴的位置信号、速度信号和加速度信号,M(X)是惯性矩阵,
Figure GDA0002369790040000024
是速度项矩阵,G(X)是重力项矩阵;根据动力学模型中的惯性矩阵、速度项矩阵、重力项矩阵与前馈补偿器中的加速度项、速度项、位置项之间的映射关系,选择动力学模型中相应矩阵元素,计算得到第二速度前馈补偿参数kvff″和第二加速度前馈补偿参数Kaff″,即
Figure GDA0002369790040000025
Figure GDA0002369790040000026
其中,m和g分别表示矩阵M(X)和G(X)中的元素,KT表示驱动电机力矩常数,Tv和Kv分别表示闭环控制器中的速度环积分时间常数和速度环比例放大参数;
b)若混联机构不能够推导得到显式动力学方程,则采用动力学仿真软件仿真机构运动或采用力矩传感器采集得到混联机构运动的驱动力τ,并结合控制器特征,给出曲线拟合方程:
Figure GDA0002369790040000027
其中,τ′表示拟合的驱动力;
Figure GDA0002369790040000031
和θ分别表示电机的转动角加速度,转动速度和转动位置,并根据曲线拟合程度指标:
η=∫|τ-τ′|
通过求解曲线拟合程度指标的最小值,计算得到第二速度前馈补偿参数 Kvff″和第二加速度前馈补偿参数Kaff″;
6)将第一速度前馈补偿参数Kvff′和第二速度前馈补偿参数Kvff″相加,得到最终的速度前馈补偿参数Kvff,即:
Kvff=Kvff′+Kvff″
将第一加速度前馈补偿参数Kaff′和第二加速度前馈补偿参数Kaff″相加,得到最终的加速度前馈补偿参数Kaff,即:
Kaff=Kaff′+Kaff″。
本发明所述闭环反馈控制器包括电流环控制器、速度环控制器和位置环控制器;所述的速度环控制器采用比例-积分控制器或者比例-积分-微分控制器;所述的位置环控制器采用比例控制器;所述的前馈补偿器包括速度前馈补偿器和加速度前馈补偿器。
上述技术方案中,所述图谱法包括如下步骤:
1)计算闭环反馈控制器中的速度环传递函数:
Figure GDA0002369790040000032
其中,J表示机构等效转动惯量,ξv和ωnv分别表示速度环阻尼比和速度环无阻尼自然频率;s表示拉普拉斯变换的复变量;
令速度环阻尼比为最佳阻尼比
Figure GDA0002369790040000033
得到速度环积分时间常数Tv和速度环比例放大参数;
2)速度环比例放大参数Kv的关系方程,即
Figure GDA0002369790040000034
3)以速度环比例放大参数Kv为横轴,位置环比例放大参数Kp为纵轴,并将评价闭环反馈控制器性能的指标用等高线图表示,绘制出所有评价指标的性能图谱;
4)给定闭环控制***的性能指标,将所有性能指标的图谱进行综合,找到满足所有性能指标的区域;
5)从区域中选取速度环比例放大参数Kv和位置环比例放大参数Kp,并根据步骤2)中的关系方程计算速度环积分时间常数Tv,得到一组控制参数;
6)将控制参数应用到实际控制器中,若无法取得满意的性能,则重复步骤5),直到得到满意的性能为止。
本发明所述评价指标是指速度环通频带宽度、速度环相角稳定裕量、位置环通频带宽度、位置环相角稳定裕量、位置环超调量或位置环上升时间。
本发明具有以下优点及突出性的技术效果:本发明针对机构的动力学特性对机构的控制参数进行设计,对可求解动力学模型的机构和无法求解动力学模型的机构等两类机构,分别提出了前馈参数设计方法。同时,在参数的设计过程中,将机构的动力学模型和控制器前馈补偿器进行了等效映射。本发明方法应用范围广泛,可运用在实际的控制参数设计中,解决了现有商业控制器调试方法中存在的反复试凑且没有考虑机构的动力学特性的问题,从而有效提升了机构的运动精度。
附图说明
图1为本发明提供的一种应用于混联机构的控制***参数整定方法的流程图。
图2为典型的闭环反馈控制器与前馈补偿器组成的控制***。
图3为一种五轴混联喷涂机器人机构示意图。
图4为闭环反馈控制器的速度环通频带宽度图谱。
图5为闭环反馈控制器的速度环相角稳定裕量图谱。
图6为闭环反馈控制器的位置环通频带宽度图谱。
图7为闭环反馈控制器的位置环相角稳定裕量图谱。
图8为闭环反馈控制器的位置环超调量图谱。
图9为闭环反馈控制器的位置环上升时间图谱。
图10为闭环反馈控制器的最终综合优化图谱。
图11为等效的闭环反馈控制器与前馈补偿器控制***。
图12为基于动力学模型设计前馈参数的控制***的机构运动轮廓误差。
图13为基于拟合曲线设计前馈参数的控制***的机构运动轮廓误差。
具体实施方式
下面结合附图及具体实施例对本发明做进一步的详细说明:
图1为本发明提供的一种应用于混联机构的控制***参数整定方法的流程图,该控制***
所述的控制***包括闭环反馈控制器和前馈补偿器两部分,其中闭环反馈控制器包括电流环控制器、速度环控制器和位置环控制器,速度环控制器采用比例-积分控制器或者比例-积分-微分控制器,位置环采用比例控制器。前馈补偿器包括速度前馈补偿器和加速度前馈补偿器(参见图2)。
所述方法包括如下步骤:
1)采用工程凑试法或图谱法对闭环反馈控制器的控制参数进行整定;
2)对闭环反馈控制器中的输入信号和输出信号进行分析,得到控制***的误差方程:
E(s)=R(s)-C(s)
式中,E(s)表示控制器的误差信号,R(s)表示控制器输入信号,C(s)表示控制器输出信号;
3)对控制器的误差信号进行分析,令误差方程为零,即:
E(s)=0
求解第一速度前馈补偿参数Kvff′和第一加速度前馈补偿参数Kaff′;
4)根据等效原理,将前馈补偿器等效分解为加速度项,速度项和位置项三部分;
5)根据混联机构能否推导得到显式动力学方程,采用如下两种方法求解第二速度前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″:
c)若混联机构能够推导得到显式动力学方程,其动力学方程如下:
Figure GDA0002369790040000051
其中,τ为混联机构运动的驱动力;X,
Figure GDA0002369790040000052
Figure GDA0002369790040000053
分别是被控机构的各个驱动轴的位置信号、速度信号和加速度信号,M(X)是惯性矩阵,
Figure GDA0002369790040000054
是速度项矩阵,G(X)是重力项矩阵;根据动力学模型中的惯性矩阵、速度项矩阵、重力项矩阵与前馈补偿器中的加速度项、速度项、位置项之间的映射关系,选择动力学模型中相应矩阵元素,计算得到第二速度前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″,即
Figure GDA0002369790040000055
Figure GDA0002369790040000056
其中,m和g分别表示矩阵M(X)和G(X)中的元素,KT表示驱动电机力矩常数,Tv和Kv分别表示闭环控制器中的速度环积分时间常数和速度环比例放大参数;
d)若混联机构不能够推导得到显式动力学方程,则采用动力学仿真软件仿真机构运动或采用力矩传感器采集得到混联机构运动的驱动力τ,并结合控制器特征,给出曲线拟合方程:
Figure GDA0002369790040000061
其中,τ′表示拟合的驱动力;
Figure GDA0002369790040000062
和θ分别表示电机的转动角加速度,转动速度和转动位置,并根据曲线拟合程度指标:
η=∫|τ-τ′|
通过求解曲线拟合程度指标的最小值,计算得到第二速度前馈补偿参数 Kvff″和第二加速度前馈补偿参数Kaff″;
6)将第一速度前馈补偿参数Kvff′和第二速度前馈补偿参数Kvff″相加,得到最终的速度前馈补偿参数Kvff,即:
Kvff=Kvff′+Kvff″
将第一加速度前馈补偿参数Kaff′和第二加速度前馈补偿参数Kaff″相加,得到最终的加速度前馈补偿参数Kaff,即:
Kaff=Kaff′+Kaff″。
图3为一种五轴混联喷涂机器人,将该控制***应用到图3所示的一种五轴混联喷涂机器人的实施例当中,对控制参数整定方法和流程进行详细介绍。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
考虑到每台驱动电机的调试过程相似,因此仅以电机1的调试过程进行示例。考虑到前馈补偿器并不会影响整个控制***的稳定性,因此先调节控制***中的闭环反馈控制器,再对前馈补偿器进行调节。调节闭环反馈控制器的方法有许多,比如图谱法、工程试凑法。本实施例将采用图谱法进行举例说明。
由于控制***的电流环通频带宽远大于速度环通频带宽,因此可以将电流环等效为单位1,因此得到速度环的传递函数:
Figure GDA0002369790040000063
其中,KT表示驱动电机力矩常数,Tv和Kv分别表示闭环控制器中的速度环积分时间常数和速度环比例放大参数,J表示表示机构等效转动惯量,ξv和ωnv分别表示速度环阻尼比和速度环无阻尼自然频率。
令速度环阻尼比为最佳阻尼比,得到速度环积分时间常数Tv和比例放大参数Kv的关系方程,即:
Figure GDA0002369790040000071
以速度环比例放大参数Kv为横轴,位置环比例放大参数Kp为纵轴,并将速度环通频带宽度、速度环相角稳定裕量、位置环通频带宽度、位置环相角稳定裕量、位置环超调量、位置环上升时间等六个指标用等高线图表示,绘制出所有评价指标的性能图谱,如图4- 图9所示。
给定控制***相应的调试指标,分别为
速度环通频带宽度:BWv>400Hz
速度环相角稳定裕量:
Figure GDA0002369790040000072
位置环通频带宽度:BWp>30Hz
位置环相角稳定裕量:
Figure GDA0002369790040000073
位置环超调量指标:-2%<σ<2%
位置环上升时间:tr<0.1s
将所有性能指标的图谱进行综合,找到满足所有性能指标的区域,如图10所示。
从区域中选取速度环比例放大参数Kv和位置环比例放大参数Kp,并根据速度环比例放大参数Kv计算速度环积分时间常数Tv,得到一组控制参数,将该组控制参数应用到实际控制器中,若无法取得满意的性能,则重复选取图谱中的控制参数,直到得到满意的性能为止。
在完成闭环反馈控制器的参数整定后,将对前馈补偿器进行调节。首先对闭环反馈控制器中的输入信号和输出信号进行分析,得到控制***的误差方程如下:
Ep(s)=Rp(s)-Cp(s)
Ev(s)=Rv(s)-Cv(s)
式中,Ep(s)和Ev(s)分别表示控制器位置环和速度环的误差信号,Rp(s)和Rv(s)分别表示控制器位置环和速度环的输入信号,Cp(s)和Cv(s)分别表示控制器位置环和速度环的输出信号。
对控制器的误差信号进行分析,令误差方程为零,即:
Ep(s)=0
Ev(s)=0
求解得到第一速度前馈补偿参数和第一加速度前馈补偿参数:
Kvff′=1
Kaff′=0
根据控制框图等效原理,将速度前馈补偿控制器移动至速度环控制器输出端,再结合加速度前馈补偿器,可等效为加速度项(Faa(s)),速度项(Fav(s))和位置项(Fap(s))三部分,如图11所示。
若机构能够求解显式动力学方程,则求解出它的动力学模型方程:
Figure GDA0002369790040000081
其中X,
Figure GDA0002369790040000082
Figure GDA0002369790040000083
分别是被控机构的各个驱动轴的位置信号、速度信号和加速度信号,M(X)是惯性矩阵,
Figure GDA0002369790040000084
是速度项矩阵,G(X)是重力项矩阵;
根据图11和动力学模型之间的映射关系,得到第二速度前馈补偿参数和第二加速度前馈补偿参数:
Figure GDA0002369790040000085
Figure GDA0002369790040000086
其中m和g分别表示矩阵M(X)和G(X)中的对角元素。
若机构无法求解动力学模型,则采用动力学仿真软件仿真机构运动或者采用力矩传感器采集得到机构运动的驱动力τ。
根据控制器特征,给出曲线拟合方程:
Figure GDA0002369790040000087
并定义拟合程度指标:
η=∫|τ-τ′|
通过求解拟合程度指标的最小值,得到前馈补偿控制器中第二速度前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″;
最后将两部分的前馈参数进行叠加,得到最终的前馈补偿器控制参数,即
Kvff=Kvff″+Kvff′
Kaff=Kaff″+Kaff′
图12和图13分别为通过动力学模型求解前馈补偿器控制参数和通过曲线拟合方程求解前馈补偿器控制参数的机构运动误差图。可以观测到,基于动力学模型对控制器的前馈参数进行调试,误差在0.3mm以内。若采用曲线拟合的方法,其精度也可达到0.6mm以内。从结果对比中可明显看出,基于动力学模型的参数调试方法能够获得更佳的控制效果,但在实际的应用中,机构的动力学模型并不能很容易计算得到,因此第二种方法不借助动力学模型来求解前馈参数的方法,具有一定的实际意义,而且其精度与第一种方法的运动精度相差不大。

Claims (4)

1.一种应用于混联机构的控制***参数整定方法,所述的控制***包括闭环反馈控制器和前馈补偿器两部分,其特征在于,所述方法包括如下步骤:
1)采用工程凑试法或图谱法对闭环反馈控制器的控制参数进行整定;
2)对闭环反馈控制器中的输入信号和输出信号进行分析,得到控制***的误差方程:
E(s)=R(s)-C(s)
式中,E(s)表示控制器的误差信号,R(s)表示控制器输入信号,C(s)表示控制器输出信号;
3)对控制器的误差信号进行分析,令误差方程为零,即:
E(s)=0
求解第一速度前馈补偿参数Kvff′和第一加速度前馈补偿参数Kaff′;
4)根据等效原理,将前馈补偿器等效分解为加速度项,速度项和位置项三部分;
5)根据混联机构能否推导得到显式动力学方程,采用如下两种方法求解第二速度前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″:
a)若混联机构能够推导得到显式动力学方程,其动力学方程如下:
Figure FDA0002369790030000011
其中,τ为混联机构运动的驱动力;X,
Figure FDA0002369790030000012
Figure FDA0002369790030000013
分别是被控机构的各个驱动轴的位置信号、速度信号和加速度信号,M(X)是惯性矩阵,
Figure FDA0002369790030000014
是速度项矩阵,G(X)是重力项矩阵;根据动力学模型中的惯性矩阵、速度项矩阵、重力项矩阵与前馈补偿器中的加速度项、速度项、位置项之间的映射关系,选择动力学模型中相应矩阵元素,计算得到第二速度前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″,即
Figure FDA0002369790030000015
Figure FDA0002369790030000016
其中,m和g分别表示矩阵M(X)和G(X)中的元素,KT表示驱动电机力矩常数,Tv和Kv分别表示闭环控制器中的速度环积分时间常数和速度环比例放大参数;
b)若混联机构不能够推导得到显式动力学方程,则采用动力学仿真软件仿真机构运动或采用力矩传感器采集得到混联机构运动的驱动力τ,并结合控制器特征,给出曲线拟合方程:
Figure FDA0002369790030000021
其中,τ′表示拟合的驱动力;
Figure FDA0002369790030000022
和θ分别表示电机的转动角加速度,转动速度和转动位置,并根据曲线拟合程度指标:
η=∫|τ-τ′|
通过求解曲线拟合程度指标的最小值,计算得到第二速度前馈补偿参数Kvff″和第二加速度前馈补偿参数Kaff″;
6)将第一速度前馈补偿参数Kvff′和第二速度前馈补偿参数Kvff″相加,得到最终的速度前馈补偿参数Kvff,即:
Kvff=Kvff′+Kvff″
将第一加速度前馈补偿参数Kaff′和第二加速度前馈补偿参数Kaff″相加,得到最终的加速度前馈补偿参数Kaff,即:
Kaff=Kaff′+Kaff″。
2.如权利要求1所述的一种应用于混联机构的控制***参数整定方法,其特征在于,所述闭环反馈控制器包括电流环控制器、速度环控制器和位置环控制器;所述的速度环控制器采用比例-积分控制器或者比例-积分-微分控制器;所述的位置环控制器采用比例控制器;所述的前馈补偿器包括速度前馈补偿器和加速度前馈补偿器。
3.如权利要求1或2所述的一种应用于混联机构的控制***参数整定方法,其特征在于,所述图谱法包括如下步骤:
1)计算闭环反馈控制器中的速度环传递函数:
Figure FDA0002369790030000023
其中,J表示机构等效转动惯量,ξv和ωnv分别表示速度环阻尼比和速度环无阻尼自然频率;s表示拉普拉斯变换的复变量;
令速度环阻尼比为最佳阻尼比
Figure FDA0002369790030000024
得到速度环积分时间常数Tv和速度环比例放大参数;
2)速度环比例放大参数Kv的关系方程,即
Figure FDA0002369790030000031
3)以速度环比例放大参数Kv为横轴,位置环比例放大参数Kp为纵轴,并将评价闭环反馈控制器性能的指标用等高线图表示,绘制出所有评价指标的性能图谱;
4)给定闭环控制***的性能指标,将所有性能指标的图谱进行综合,找到满足所有性能指标的区域;
5)从区域中选取速度环比例放大参数Kv和位置环比例放大参数Kp,并根据步骤2)中的关系方程计算速度环积分时间常数Tv,得到一组控制参数;
6)将控制参数应用到实际控制器中,若无法取得满意的性能,则重复步骤5),直到得到满意的性能为止。
4.如权利要求3所述一种应用于混联机构的控制***参数整定方法,其特征在于,所述评价指标是指速度环通频带宽度、速度环相角稳定裕量、位置环通频带宽度、位置环相角稳定裕量、位置环超调量或位置环上升时间。
CN201710624717.7A 2017-07-27 2017-07-27 一种应用于混联机构的控制***参数整定方法 Active CN107390525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710624717.7A CN107390525B (zh) 2017-07-27 2017-07-27 一种应用于混联机构的控制***参数整定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710624717.7A CN107390525B (zh) 2017-07-27 2017-07-27 一种应用于混联机构的控制***参数整定方法

Publications (2)

Publication Number Publication Date
CN107390525A CN107390525A (zh) 2017-11-24
CN107390525B true CN107390525B (zh) 2020-07-10

Family

ID=60341813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710624717.7A Active CN107390525B (zh) 2017-07-27 2017-07-27 一种应用于混联机构的控制***参数整定方法

Country Status (1)

Country Link
CN (1) CN107390525B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221541B (zh) * 2019-05-31 2022-11-29 固高科技股份有限公司 伺服***中前馈控制器的前馈系数获取装置、方法
CN111505939B (zh) * 2020-04-23 2021-09-21 清华大学 直线运动***前馈控制器的参数整定方法
CN111740671B (zh) * 2020-05-27 2022-03-18 清华大学 电机参数畸变情况下的机电设备相似分析方法及装置
CN112414199B (zh) * 2020-11-24 2021-12-03 浙江银轮机械股份有限公司 散热翅片构建方法及相关装置、散热翅片
CN113103211B (zh) * 2021-02-09 2022-06-14 清华大学 并联加工机器人前馈控制方法及装置
CN112994528B (zh) * 2021-03-01 2021-10-22 东莞普莱信智能技术有限公司 一种mini Led倒装巨量转移控制***与控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137764A (zh) * 2015-10-15 2015-12-09 清华大学 一种具有快速响应及鲁棒性能的并联机器人运动控制方法
CN105676896A (zh) * 2016-01-06 2016-06-15 西安交通大学 一种应用于机器人伺服***的前馈控制方法
CN106041926A (zh) * 2016-06-12 2016-10-26 哈尔滨工程大学 一种基于卡尔曼滤波器的工业机械臂力/位置混合控制方法
CN106313044A (zh) * 2016-09-20 2017-01-11 华南理工大学 一种工业机器人前馈力矩补偿方法
CN106527129A (zh) * 2016-10-18 2017-03-22 长安大学 一种并联机器人间接自适应模糊控制参数的确定方法
CN106655956A (zh) * 2016-11-17 2017-05-10 北京特种机械研究所 伺服控制***机械谐振抑制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762364B2 (ja) * 1989-03-20 1998-06-04 ファナック株式会社 サーボモータのフィードフォワード制御方法
WO1992009022A1 (en) * 1990-11-08 1992-05-29 Fanuc Ltd Method for controlling servomotor feedforward
KR100855798B1 (ko) * 2000-05-15 2008-09-01 가부시키가이샤 야스카와덴키 위치결정 서보콘트롤러

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137764A (zh) * 2015-10-15 2015-12-09 清华大学 一种具有快速响应及鲁棒性能的并联机器人运动控制方法
CN105676896A (zh) * 2016-01-06 2016-06-15 西安交通大学 一种应用于机器人伺服***的前馈控制方法
CN106041926A (zh) * 2016-06-12 2016-10-26 哈尔滨工程大学 一种基于卡尔曼滤波器的工业机械臂力/位置混合控制方法
CN106313044A (zh) * 2016-09-20 2017-01-11 华南理工大学 一种工业机器人前馈力矩补偿方法
CN106527129A (zh) * 2016-10-18 2017-03-22 长安大学 一种并联机器人间接自适应模糊控制参数的确定方法
CN106655956A (zh) * 2016-11-17 2017-05-10 北京特种机械研究所 伺服控制***机械谐振抑制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An experimental study of a redundantly actuated parallel manipulator for a 5-DOF hybrid machine tool;L. Wang, J. Wu,ect.;《IEEE/ASME Trans. Mechatronics》;20090213;72-77 *
混联机器人运动学误差补偿及最优轨迹规划研究;陈小立;《中国优秀硕士学位论文全文数据库在线 信息科技辑》;20150215;7,9,12-13 *

Also Published As

Publication number Publication date
CN107390525A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107390525B (zh) 一种应用于混联机构的控制***参数整定方法
CN108646572B (zh) 一种基于bp神经网络与自抗扰控制器相结合的三轴云台伺服电机的控制方法
CN108762096B (zh) 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架***扰动抑制方法
CN109324636B (zh) 基于二阶一致性和自抗扰的多四旋翼主从式协同编队控制方法
CN104317299B (zh) 一种基于轮式移动机器人轨迹跟踪的混合控制方法
CN107121932B (zh) 电机伺服***误差符号积分鲁棒自适应控制方法
CN106788036A (zh) 一种直流电机的改进型自抗扰位置控制器及其设计方法
CN104950678B (zh) 一种柔性机械臂***的神经网络反演控制方法
CN105159077B (zh) 直驱电机***干扰补偿的有限时间连续滑模控制方法
CN104339351A (zh) 机器人控制装置
CN103577244B (zh) 负载模拟器的速度同步控制方法和***
CN105182984A (zh) 飞行器俯仰姿态的线性自抗扰控制器设计与参数整定
CN106647283A (zh) 一种基于改进cpso的自抗扰位置伺服***优化设计方法
CN107505841B (zh) 一种基于干扰估计器的机械臂姿态鲁棒控制方法
CN103777641A (zh) 飞行器跟踪控制的复合自抗扰控制方法
CN108536185B (zh) 一种基于降阶级联扩张状态观测器的双框架磁悬浮cmg框架***参数优化方法
CN103433924A (zh) 串联机器人高精度位置控制方法
CN113241973B (zh) S型滤波器迭代学习控制直线电机轨迹跟踪控制方法
CN104730922B (zh) 基于扩张状态观测器的伺服***线性反馈控制和极点配置确定参数方法
CN106493735A (zh) 存在外界扰动的柔性机械臂扰动观测控制方法
CN107687925B (zh) 一种地震模拟振动台控制方法
CN108121354A (zh) 基于指令滤波反步法的四旋翼无人机稳定跟踪控制方法
CN104965412B (zh) 受控化发射平台的自适应鲁棒输出反馈控制方法
CN103728988A (zh) 基于内模的scara机器人轨迹跟踪控制方法
CN102591203B (zh) 一种伺服电机的基于微分器的直接神经网络控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant