CN107293715B - A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material - Google Patents
A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material Download PDFInfo
- Publication number
- CN107293715B CN107293715B CN201710468046.XA CN201710468046A CN107293715B CN 107293715 B CN107293715 B CN 107293715B CN 201710468046 A CN201710468046 A CN 201710468046A CN 107293715 B CN107293715 B CN 107293715B
- Authority
- CN
- China
- Prior art keywords
- cnt
- composite material
- lithium
- ceo
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims description 18
- 239000000725 suspension Substances 0.000 claims abstract description 33
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000000047 product Substances 0.000 claims abstract description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 18
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 18
- 239000011593 sulfur Substances 0.000 claims abstract description 17
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 17
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims abstract description 10
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 10
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 10
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 10
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 8
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 32
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims description 32
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 16
- 239000004312 hexamethylene tetramine Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229920001021 polysulfide Polymers 0.000 description 6
- 239000005077 polysulfide Substances 0.000 description 6
- 150000008117 polysulfides Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 5
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000013543 active substance Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910018091 Li 2 S Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011366 tin-based material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种锂硫电池正极用S/CNT‑CeO2复合材料的制备方法是将碳纳米管加入三乙二醇和水的混合溶液中超声处理形成碳纳米管悬浮液;将硝酸铈和六亚甲基四胺依次加入到悬浮液中,并搅拌,之后装入聚四氟乙烯反应釜中在100‑200℃下反应;反应产物放入惰性气氛中于400‑1000℃反应,冷去后取出产物,得到的CNT‑CeO2产物和硫粉混合再反应后,得S/CNT‑CeO2复合材料。本发明具有载硫量高,放电比容量高,循环稳定性好的优点。
A kind of S/CNT - CeO2 composite material preparation method is that carbon nanotube is added in the mixed solution of triethylene glycol and water and forms carbon nanotube suspension; Tetramines are added to the suspension one by one and stirred, and then put into a polytetrafluoroethylene reactor to react at 100-200°C; the reaction product is placed in an inert atmosphere and reacted at 400-1000°C, and the product is taken out after cooling. The obtained CNT-CeO 2 product is mixed with sulfur powder and then reacted to obtain the S/CNT-CeO 2 composite material. The invention has the advantages of high sulfur loading capacity, high discharge specific capacity and good cycle stability.
Description
技术领域technical field
本发明属于锂硫电池技术领域,特别是涉及一种正极用S/CNT-CeO2复合材料的制备方法。The invention belongs to the technical field of lithium-sulfur batteries, and in particular relates to a preparation method of an S/CNT - CeO2 composite material for positive electrodes.
背景技术Background technique
随着电子科技的进步,便携式用电器逐渐向轻、薄、小的方向发展,电动汽车的商业化需要安全、长续航能力的动力电源,人们对高安全系数、低成本、高能量密度和循环寿命长的二次电池需求日益迫切。锂离子电池与铅酸蓄电池、镍镉电池和镍氢电池等二次电池相比,具有工作电压高、能量密度大、循环寿命长、自放电率小、低污染和无记忆效应等优点,商品化以后,获得了迅猛的发展。近几年,锂离子电池负极材料的研发取得了重大突破,新型硅基和锡基材料的比容量均较碳基材料有大幅度提高,但是正极材料的研发进展却比较缓慢。目前,几种商品化的正极材料理论比容量都小于200mAh/g,组成的锂离子电池能量密度仅有150~180Wh/kg,并且存在一定的安全隐患。因此,寻找和开发新型高比容量和高比能量的安全、廉价正极材料是目前研究的热点。With the advancement of electronic technology, portable electrical appliances are gradually developing in the direction of lightness, thinness and smallness. The commercialization of electric vehicles requires safe and long-lasting power sources. The demand for long-life secondary batteries is increasingly urgent. Compared with secondary batteries such as lead-acid batteries, nickel-cadmium batteries and nickel-hydrogen batteries, lithium-ion batteries have the advantages of high working voltage, high energy density, long cycle life, small self-discharge rate, low pollution and no memory effect. After the transformation, it has developed rapidly. In recent years, major breakthroughs have been made in the research and development of negative electrode materials for lithium-ion batteries. The specific capacities of new silicon-based and tin-based materials have been greatly improved compared with carbon-based materials, but the development of positive electrode materials has been relatively slow. At present, the theoretical specific capacity of several commercial cathode materials is less than 200mAh/g, and the energy density of the lithium-ion battery composed of them is only 150-180Wh/kg, and there are certain safety hazards. Therefore, finding and developing new safe and cheap cathode materials with high specific capacity and high specific energy is a research hotspot at present.
锂硫二次电池是以金属锂作为负极,单质硫或硫基复合材料作为正极的二次电池。在理论上,锂与硫完全反应后生成Li2S,可实现2电子反应,其理论比容量高达1675mAh/g,以硫与金属锂构建的二次电池体系理论能量密度达 2600Wh/kg,实际能量密度目前能达到566Wh/kg,且单质硫质量轻,自然资源丰富,价格低廉,环境友好,是最具潜力的高容量电极材料。A lithium-sulfur secondary battery is a secondary battery in which metallic lithium is used as the negative electrode, and elemental sulfur or sulfur-based composite materials are used as the positive electrode. In theory, Li 2 S is formed after the complete reaction of lithium and sulfur, which can realize 2-electron reaction, and its theoretical specific capacity is as high as 1675mAh/g. The energy density can reach 566Wh/kg at present, and the elemental sulfur is light in weight, rich in natural resources, low in price, and environmentally friendly. It is the most potential high-capacity electrode material.
但是,单质硫作为正极存在以下问题:(1)单质硫在室温下是电子和离子绝缘体;(2)单质硫在放电过程中会被还原成可溶于电解液的长链多硫化物,一方面造成活性物质流失,另一方面长链多硫化物溶于电解液会增大电解液粘度,恶化其离子导电性;(3)溶于电解液的长链多硫化物会扩散到金属锂负极,发生自放电反应,被还原为短链多硫化物又扩散回正极,导致严重的锂负极腐蚀和较低的库伦效率,这个过程称为穿梭效应;(4)充放电过程中硫电极会发生体积的收缩和膨胀,一定程度上破坏电极的物理结构。这些问题导致锂硫电池存在活性物质利用率低、电化学可逆性差以及容量衰减快等不足。However, elemental sulfur has the following problems as a positive electrode: (1) elemental sulfur is an electronic and ion insulator at room temperature; (2) elemental sulfur will be reduced to long-chain polysulfides soluble in the electrolyte during discharge. On the one hand, it causes the loss of active substances, on the other hand, the dissolution of long-chain polysulfides in the electrolyte will increase the viscosity of the electrolyte and deteriorate its ionic conductivity; (3) the long-chain polysulfides dissolved in the electrolyte will diffuse to the metal lithium negative electrode , a self-discharge reaction occurs, which is reduced to a short-chain polysulfide and diffuses back to the positive electrode, resulting in severe corrosion of the lithium negative electrode and low Coulombic efficiency. This process is called the shuttle effect; (4) sulfur electrodes will occur during charging and discharging. The shrinkage and expansion of the volume destroys the physical structure of the electrode to a certain extent. These problems lead to the disadvantages of low active material utilization, poor electrochemical reversibility, and fast capacity fading in lithium-sulfur batteries.
近几年,研究者在正极材料、电解质及负极材料等方面进行了大量探索研究。高性能硫基复合材料的研究工作,主要集中在两个方面,一是将硫吸附在多孔材料的孔道内,另一个是在单质硫表面包覆导电的高分子聚合物保护层。其中,多孔材料的高比表面和孔隙结构有利于硫的均匀分布与负载,通过将硫均匀分散到孔道或空隙中,可以明显改善硫正极的导电性。同时,利用微孔、介孔较强的吸附性能也可以限制多硫化物的溶解流失。研究者关注较多的多孔材料一般都是碳材料,但传统的碳材料比表面积较小,孔道结构一致性差,孔径分布不均匀,导致制备的复合材料载硫量小、硫分布不均匀;而且孔道结构中的活性物质会溶解进入电解液形成多硫化物,因而对穿梭效应的抑制作用十分有限。In recent years, researchers have conducted a lot of exploration and research on cathode materials, electrolytes, and anode materials. The research work of high-performance sulfur-based composite materials mainly focuses on two aspects, one is to adsorb sulfur in the pores of porous materials, and the other is to coat the surface of elemental sulfur with a conductive polymer protective layer. Among them, the high specific surface area and pore structure of porous materials are conducive to the uniform distribution and loading of sulfur, and the conductivity of the sulfur cathode can be significantly improved by uniformly dispersing sulfur into the pores or voids. At the same time, the strong adsorption performance of micropores and mesoporous pores can also limit the dissolution and loss of polysulfides. The porous materials that researchers pay more attention to are generally carbon materials, but traditional carbon materials have small specific surface area, poor pore structure consistency, and uneven pore size distribution, resulting in small sulfur loading and uneven sulfur distribution in the prepared composite materials; and The active substances in the pore structure will dissolve into the electrolyte to form polysulfides, so the inhibitory effect on the shuttle effect is very limited.
发明内容Contents of the invention
本发明要解决的技术问题是,克服现有技术的不足,提供一种载硫量高,放电比容量高,循环稳定性好的锂硫电池正极用S/CNT-CeO2复合材料的制备方法。The technical problem to be solved in the present invention is to overcome the deficiencies in the prior art and provide a method for preparing S/CNT - CeO2 composite material with high sulfur loading capacity, high discharge specific capacity and good cycle stability for lithium-sulfur battery cathode .
本发明制备方法包括以下步骤:The preparation method of the present invention comprises the following steps:
(1)将碳纳米管加入三乙二醇和水的体积比为0.5-2的混合溶液中超声 10-40min,形成碳纳米管浓度为1-10g/L的悬浮液;(1) Adding carbon nanotubes into a mixed solution with a volume ratio of triethylene glycol and water of 0.5-2 and ultrasonicating for 10-40min to form a suspension with a carbon nanotube concentration of 1-10g/L;
(2)将硝酸铈和六亚甲基四胺依次加入到上述悬浮液中,并搅拌,形成的悬浮液中硝酸铈浓度为0.005-0.1mol/L,六亚甲基四胺的浓度为0.001-0.25 mol/L;(2) Add cerium nitrate and hexamethylenetetramine to the above suspension in turn, and stir, the concentration of cerium nitrate in the formed suspension is 0.005-0.1mol/L, and the concentration of hexamethylenetetramine is 0.001 -0.25mol/L;
(3)将步骤(2)上述悬浮液装入聚四氟乙烯反应釜中,在100-200℃下反应 1-10h;(3) Put the above-mentioned suspension in step (2) into a polytetrafluoroethylene reactor, and react at 100-200°C for 1-10h;
(4)将步骤(3)反应产物放入惰性气氛中,400-1000℃反应1-5h,冷去后取出产物,即得产物CNT-CeO2;(4) Put the reaction product of step (3) in an inert atmosphere, react at 400-1000° C. for 1-5 hours, take out the product after cooling down, and obtain the product CNT-CeO 2 ;
(5)将步骤(4)产物和硫粉以质量比为0.5-5混合,100-200℃下反应1-5h,即得产物S/CNT-CeO2复合材料。(5) Mix the product of step (4) and sulfur powder at a mass ratio of 0.5-5, and react at 100-200°C for 1-5h to obtain the product S/CNT-CeO 2 composite material.
进一步地,所述步骤(1)中三乙二醇和水的体积比最好为1-1.5。Further, the volume ratio of triethylene glycol and water in the step (1) is preferably 1-1.5.
进一步地,所述步骤(1)中悬浮液的超声时间最好为20-30mim。Further, the ultrasonic time of the suspension in the step (1) is preferably 20-30 min.
进一步地,所述步骤(1)中悬浮液中碳纳米管的浓度最好为3-5g/L。Further, the concentration of carbon nanotubes in the suspension in the step (1) is preferably 3-5 g/L.
进一步地,所述步骤(2)中硝酸铈的浓度最好为0.05-0.075mol/L。进一步地,所述步骤(2)中加入六次亚甲基四胺的浓度最好为0.01-0.20mol/L。Further, the concentration of cerium nitrate in the step (2) is preferably 0.05-0.075mol/L. Further, the concentration of hexamethylenetetramine added in the step (2) is preferably 0.01-0.20 mol/L.
进一步地,所述步骤(3)中聚四氟乙烯反应釜中反应温度最好为100-200℃,反应时间最好为3-5h。Further, the reaction temperature in the polytetrafluoroethylene reactor in the step (3) is preferably 100-200° C., and the reaction time is preferably 3-5 hours.
进一步地,所述步骤(4)中惰性气氛为氮气或氩气。Further, the inert atmosphere in the step (4) is nitrogen or argon.
进一步地,所述步骤(4)中管式炉的反应温度最好为500-1000℃,反应时间为2-3h。Further, the reaction temperature of the tube furnace in the step (4) is preferably 500-1000°C, and the reaction time is 2-3h.
进一步地,步骤(5)中硫和CNT-CeO2质量最好比为3-5。Further, the mass ratio of sulfur and CNT-CeO2 in step ( 5 ) is preferably 3-5.
进一步地,所述步骤(5)中反应温度最好为120-180℃,反应时间最好为2-3h。Further, the reaction temperature in the step (5) is preferably 120-180° C., and the reaction time is preferably 2-3 hours.
本发明具有如下有益效果:The present invention has following beneficial effects:
(1)碳纳米管形成三维导电通路,提高电极的导电性;(1) Carbon nanotubes form a three-dimensional conductive path to improve the conductivity of the electrode;
(2)纳米尺寸的氧化铈能够有效的抑制穿梭效应,提高锂硫电池寿命。(2) Nano-sized cerium oxide can effectively suppress the shuttle effect and improve the life of lithium-sulfur batteries.
(3)本发明制备的S/CNT-CeO2复合材料能改善硫的导电性,抑制穿梭效应,提高硫的利用率,具有载硫量高(大于50%)、首次放电比容量高(0.2CmAg-1时首次放电大于1200mAhg-1)、循环稳定性(0.2C时充放电600次比容量仍然有 500mAhg-1)。(3) The S/CNT - CeO2 composite material prepared by the present invention can improve the conductivity of sulfur, suppress the shuttle effect, improve the utilization rate of sulfur, have high sulfur loading (greater than 50%), and high specific capacity for the first discharge (0.2 CmAg -1 , the first discharge is greater than 1200mAhg -1 ), cycle stability (at 0.2C, the specific capacity is still 500mAhg -1 after charging and discharging 600 times).
附图说明Description of drawings
图1是CNT-CeO2场发射扫描电子显微镜图片。Figure 1 is a field emission scanning electron microscope picture of CNT-CeO 2 .
图2是S/CNT-CeO2场发射扫面电子显微镜图片。Figure 2 is a field emission scanning electron microscope image of S/CNT-CeO 2 .
图3是S/CNT-CeO2复合正极片组装成的锂硫电池的循环寿命。Figure 3 shows the cycle life of lithium-sulfur batteries assembled from S/CNT-CeO 2 composite cathode sheets.
具体实施方式Detailed ways
以下将结合具体的实施例,对本发明作进一步详尽阐述。应理解,本发明所描述的实施例,仅作为本发明的较佳实施例,而不是用于限制本发明的实施例。此外,根据本发明的主要构思和原理,本领域的技术人员可以很方便地对本发明作各种相应的改动和修改,这些没有做出创造性劳动前提下作出的改动和修改,都属于本申请所附权利要求书所要求的保护范围。The present invention will be further elaborated below in conjunction with specific examples. It should be understood that the described embodiments of the present invention are only used as preferred embodiments of the present invention, and are not used to limit the embodiments of the present invention. In addition, according to the main ideas and principles of the present invention, those skilled in the art can easily make various corresponding changes and modifications to the present invention, and these changes and modifications made without creative work belong to the scope of this application. The scope of protection required by the appended claims.
实施例1Example 1
(1)将碳纳米管加入到三乙二醇和水的体积比为0.5的混合溶液中超声 10min,形成碳纳米管浓度为1g/L的悬浮液;(1) adding carbon nanotubes to a mixed solution with a volume ratio of triethylene glycol and water of 0.5 and supersonicating for 10 min to form a suspension with a carbon nanotube concentration of 1 g/L;
(2)将硝酸铈和六亚甲基四胺依次加入到上述悬浮液中,并搅拌,形成的悬浮液中硝酸铈浓度为0.005mol/L,六亚甲基四胺的浓度为0.001mol/L。(2) Add cerium nitrate and hexamethylenetetramine to the above-mentioned suspension successively, and stir, the concentration of cerium nitrate in the formed suspension is 0.005mol/L, and the concentration of hexamethylenetetramine is 0.001mol/L L.
(3)将上述悬浮液装入聚四氟乙烯反应釜中加热反应,在100℃下反应2h。(3) Put the above suspension into a polytetrafluoroethylene reactor and heat for reaction at 100°C for 2 hours.
(4)将上述的反应产物放入氮气保护气体中,400℃反应1h,冷去后取出产物,即得产物CNT-CeO2;(4) Put the above reaction product in a nitrogen protective gas, react at 400°C for 1 hour, take out the product after cooling down, and obtain the product CNT-CeO2;
(5)将上述(4)中的产物和硫粉以质量比为0.5混合,140℃下反应1h,即得产物S/CNT-CeO2复合材料。(5) Mix the product in (4) above with sulfur powder at a mass ratio of 0.5, and react at 140° C. for 1 hour to obtain the product S/CNT-CeO2 composite material.
(6)扣式电池的组装和测试方法:将S/CNT-CeO2复合材料、导电碳黑、PVDF按 8︰1︰1的质量比分散于NMP中,均匀混合制成浆料,涂覆在铝箔上,烘干后冲压成直径14mm的正极片,用金属锂片作负极,电解液为1M LiTFSI/DME︰DOL(1︰1),在充满氩气的手套箱中组装成CR2025扣式电池。电池在1.5-3.0V的充放电区间内,以0.2C的充放电倍率进行充放电和循环稳定性测试。(6) Assembly and testing methods of button cells: Disperse S/CNT-CeO 2 composite material, conductive carbon black, and PVDF in NMP at a mass ratio of 8:1:1, mix uniformly to make a slurry, and coat On the aluminum foil, after drying, it is stamped into a positive electrode sheet with a diameter of 14mm, and the lithium metal sheet is used as the negative electrode. The electrolyte is 1M LiTFSI/DME:DOL (1:1), and assembled into a CR2025 button in a glove box filled with argon. Battery. The battery is charged and discharged and cycle stability tested at a charge and discharge rate of 0.2C within the charge and discharge interval of 1.5-3.0V.
实施例2Example 2
(1)将碳纳米管加入到三乙二醇和水的体积比为0.8的混合溶液中超声 20min,形成碳纳米管浓度为3g/L的悬浮液;(1) adding carbon nanotubes to a mixed solution with a volume ratio of triethylene glycol and water of 0.8 and ultrasonicating for 20min to form a suspension with a carbon nanotube concentration of 3g/L;
(2)将硝酸铈和六亚甲基四胺依次加入到上述悬浮液中,并搅拌,形成的悬浮液中硝酸铈浓度为0.01mol/L,六亚甲基四胺的浓度为0.01mol/L;(2) Add cerium nitrate and hexamethylenetetramine to the above-mentioned suspension successively, and stir, the concentration of cerium nitrate in the formed suspension is 0.01mol/L, and the concentration of hexamethylenetetramine is 0.01mol/L L;
(3)将上述悬浮液装入聚四氟乙烯反应釜中加热反应,在120℃下反应3h。(3) Put the above suspension into a polytetrafluoroethylene reactor and heat for reaction at 120° C. for 3 hours.
(4)将上述反应产物放入氩气保护气体中,600℃反应2h,冷去后取出产物,即得产物CNT-CeO2;(4) Put the above reaction product in an argon protective gas, react at 600°C for 2 hours, take out the product after cooling off, and obtain the product CNT-CeO 2 ;
(5)将上述产物和硫粉以质量比为1.2混合,160℃下反应2h,即得产物 S/CNT-CeO2复合材料。(5) Mix the above product and sulfur powder at a mass ratio of 1.2, and react at 160°C for 2 hours to obtain the product S/CNT-CeO 2 composite material.
(6)扣式电池的组装和测试方法:将S/CNT-CeO2复合材料、导电碳黑、PVDF按 8︰1︰1的质量比分散于NMP中,均匀混合制成浆料,涂覆在铝箔上,烘干后冲压成直径14mm的正极片,用金属锂片作负极,电解液为1M LiTFSI/DME︰DOL(1︰1),在充满氩气的手套箱中组装成CR2025扣式电池。电池在1.5-3.0V的充放电区间内,以0.2C的充放电倍率进行充放电和循环稳定性测试。(6) Assembly and testing methods of button cells: Disperse S/CNT-CeO 2 composite material, conductive carbon black, and PVDF in NMP at a mass ratio of 8:1:1, mix uniformly to make a slurry, and coat On the aluminum foil, after drying, it is stamped into a positive electrode sheet with a diameter of 14mm, and the lithium metal sheet is used as the negative electrode. The electrolyte is 1M LiTFSI/DME:DOL (1:1), and assembled into a CR2025 button in a glove box filled with argon. Battery. The battery is charged and discharged and cycle stability tested at a charge and discharge rate of 0.2C within the charge and discharge interval of 1.5-3.0V.
实施例3Example 3
(1)将碳纳米管加入到三乙二醇和水的体积比为1.5的混合溶液中超声 30min,形成碳管浓度为5g/L的悬浮液;(1) adding carbon nanotubes to a mixed solution with a volume ratio of triethylene glycol and water of 1.5 and ultrasonicating for 30min to form a suspension whose concentration of carbon nanotubes is 5g/L;
(2)将硝酸铈和六亚甲基四胺依次加入到上述悬浮液中,并搅拌,形成的悬浮液中硝酸铈浓度为0.05mol/L,六亚甲基四胺的浓度为0.05mol/L;(2) Add cerium nitrate and hexamethylenetetramine to the above-mentioned suspension successively, and stir, the concentration of cerium nitrate in the formed suspension is 0.05mol/L, and the concentration of hexamethylenetetramine is 0.05mol/L L;
(3)将上述悬浮液装入聚四氟乙烯反应釜中加热反应,在150℃下反应5h;(3) Put the above-mentioned suspension into a polytetrafluoroethylene reactor and heat for reaction at 150° C. for 5 hours;
(4)将上述反应产物放入氮气保护气体中,700℃反应3h,冷去后取出产物,即得产物CNT-CeO2;(4) Put the above reaction product in a nitrogen protective gas, react at 700°C for 3 hours, take out the product after cooling off, and obtain the product CNT-CeO 2 ;
(5)将上述产物和硫粉以质量比为3混合,180℃下反应3h,即得产物 S/CNT-CeO2复合材料。(5) Mix the above product and sulfur powder at a mass ratio of 3, and react at 180° C. for 3 h to obtain the product S/CNT-CeO 2 composite material.
(6)扣式电池的组装和测试方法:将S/CNT-CeO2复合材料、导电碳黑、PVDF按 8︰1︰1的质量比分散于NMP中,均匀混合制成浆料,涂覆在铝箔上,烘干后冲压成直径14mm的正极片,用金属锂片作负极,电解液为1M LiTFSI/DME ︰DOL(1︰1),在充满氩气的手套箱中组装成CR2025扣式电池。电池在 1.5-3.0V的充放电区间内,以0.2C的充放电倍率进行充放电和循环稳定性测试。(6) Assembly and testing methods of button cells: Disperse S/CNT-CeO 2 composite material, conductive carbon black, and PVDF in NMP at a mass ratio of 8:1:1, mix uniformly to make a slurry, and coat On the aluminum foil, after drying, it is punched into a positive electrode sheet with a diameter of 14mm, and a metal lithium sheet is used as the negative electrode. The electrolyte is 1M LiTFSI/DME:DOL (1:1), and assembled into a CR2025 button in a glove box filled with argon. Battery. The battery is charged and discharged and cycle stability tested at a charge and discharge rate of 0.2C within the charge and discharge interval of 1.5-3.0V.
实施例4Example 4
(1)将碳纳米管加入到三乙二醇和水的体积比为1.7的混合溶液中超声 25min,形成碳纳米管浓度为7g/L的悬浮液;(1) adding carbon nanotubes to a mixed solution with a volume ratio of triethylene glycol and water of 1.7 and ultrasonicating for 25min to form a suspension with a carbon nanotube concentration of 7g/L;
(2)将硝酸铈和六亚甲基四胺依次加入到上述(1)中悬浮液中,并搅拌,形成的悬浮液中硝酸铈浓度为0.07mol/L,六亚甲基四胺的浓度为0.1 mol/L;(2) Add cerium nitrate and hexamethylenetetramine to the suspension in the above (1) successively, and stir, the concentration of cerium nitrate in the formed suspension is 0.07mol/L, the concentration of hexamethylenetetramine 0.1 mol/L;
(3)将上述悬浮液装入聚四氟乙烯反应釜中加热反应,在170℃下反应7h;(3) Put the above-mentioned suspension into a polytetrafluoroethylene reactor for heating and react at 170°C for 7 hours;
(4)将上述反应产物放入氮气保护气体中,800℃反应3.5h,冷去后取出产物,即得产物CNT-CeO2;(4) Put the above reaction product in a nitrogen protective gas, react at 800° C. for 3.5 hours, take out the product after cooling off, and obtain the product CNT-CeO 2 ;
(5)将上述中的产物和硫粉以质量比为3.5混合,170℃下反应3.5h,即得产物S/CNT-CeO2复合材料。(5) Mix the above product and sulfur powder at a mass ratio of 3.5, and react at 170° C. for 3.5 hours to obtain the product S/CNT-CeO 2 composite material.
(6)扣式电池的组装和测试方法:将S/CNT-CeO2复合材料、导电碳黑、PVDF按 8︰1︰1的质量比分散于NMP中,均匀混合制成浆料,涂覆在铝箔上,烘干后冲压成直径14mm的正极片,用金属锂片作负极,电解液为1M LiTFSI/DME ︰DOL(1︰1),在充满氩气的手套箱中组装成CR2025扣式电池。电池在 1.5-3.0V的充放电区间内,以0.2C的充放电倍率进行充放电和循环稳定性测试。(6) Assembly and testing methods of button cells: Disperse S/CNT-CeO 2 composite material, conductive carbon black, and PVDF in NMP at a mass ratio of 8:1:1, mix uniformly to make a slurry, and coat On the aluminum foil, after drying, it is punched into a positive electrode sheet with a diameter of 14mm, and a metal lithium sheet is used as the negative electrode. The electrolyte is 1M LiTFSI/DME:DOL (1:1), and assembled into a CR2025 button in a glove box filled with argon. Battery. The battery is charged and discharged and cycle stability tested at a charge and discharge rate of 0.2C within the charge and discharge interval of 1.5-3.0V.
实施案例5:Implementation case 5:
(1)将碳纳米管加入到三乙二醇和水的体积比为2的混合溶液中超声 10-40min,形成碳纳米管浓度为10g/L的悬浮液;(1) adding carbon nanotubes to triethylene glycol and water in a mixed solution with a volume ratio of 2 for ultrasonication of 10-40min to form a suspension with a carbon nanotube concentration of 10g/L;
(2)将硝酸铈和六亚甲基四胺依次加入到上述悬浮液中,并搅拌,形成的悬浮液中硝酸铈浓度为0.1mol/L,六亚甲基四胺的浓度为0.25mol/L;(2) Add cerium nitrate and hexamethylenetetramine to the above-mentioned suspension successively, and stir, the concentration of cerium nitrate in the formed suspension is 0.1mol/L, and the concentration of hexamethylenetetramine is 0.25mol/L L;
(3)将上述(2)中悬浮液装入聚四氟乙烯反应釜中加热反应,在180℃下反应10h;(3) Put the suspension in the above (2) into a polytetrafluoroethylene reactor and heat for reaction, and react at 180°C for 10 hours;
(4)将上述反应产物放入氩气保护气体中,1000℃反应5h,冷去后取出产物,即得产物CNT-CeO2;(4) Put the above reaction product in an argon protective gas, react at 1000°C for 5 hours, take out the product after cooling off, and obtain the product CNT-CeO 2 ;
(5)将上述产物和硫粉以质量比为5混合,200℃下反应5h,即得产物 S/CNT-CeO2复合材料。(5) Mix the above product and sulfur powder at a mass ratio of 5, and react at 200°C for 5 hours to obtain the product S/CNT-CeO 2 composite material.
(6)扣式电池的组装和测试方法:将S/CNT-CeO2复合材料、导电碳黑、PVDF 按8︰1︰1的质量比分散于NMP中,均匀混合制成浆料,涂覆在铝箔上,烘干后冲压成直径14mm的正极片,用金属锂片作负极,电解液为1M LiTFSI/DME︰DOL(1︰1),在充满氩气的手套箱中组装成CR2025扣式电池。电池在1.5-3.0V的充放电区间内,以0.2C的充放电倍率进行充放电和循环稳定性测试。(6) Assembly and testing method of button cell: S/CNT-CeO 2 composite material, conductive carbon black, and PVDF are dispersed in NMP at a mass ratio of 8:1:1, uniformly mixed to form a slurry, and coated On the aluminum foil, after drying, it is stamped into a positive electrode sheet with a diameter of 14mm, and the lithium metal sheet is used as the negative electrode. The electrolyte is 1M LiTFSI/DME:DOL (1:1), and assembled into a CR2025 button in a glove box filled with argon. Battery. The battery is charged and discharged and cycle stability tested at a charge and discharge rate of 0.2C within the charge and discharge interval of 1.5-3.0V.
表1是实施例测试结果Table 1 is embodiment test result
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710468046.XA CN107293715B (en) | 2017-06-20 | 2017-06-20 | A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710468046.XA CN107293715B (en) | 2017-06-20 | 2017-06-20 | A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107293715A CN107293715A (en) | 2017-10-24 |
CN107293715B true CN107293715B (en) | 2019-09-10 |
Family
ID=60096572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710468046.XA Active CN107293715B (en) | 2017-06-20 | 2017-06-20 | A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107293715B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108232164B (en) * | 2018-01-15 | 2020-08-07 | 中南大学 | Lithium-sulfur battery positive electrode material and preparation method thereof |
KR102244910B1 (en) * | 2018-03-16 | 2021-04-26 | 주식회사 엘지화학 | Ceria-carbon-surfur complex, manufacturing method thereof, positive electrode and lithium-sulfur battery comprising the same |
CN109461903A (en) * | 2018-09-29 | 2019-03-12 | 昆明理工大学 | A kind of preparation method of lithium-sulfur battery composite cathode material |
CN110993928B (en) * | 2019-11-19 | 2021-04-09 | 宁波大学 | A kind of manufacturing method of lithium-sulfur battery cathode material |
CN111200125A (en) * | 2020-01-10 | 2020-05-26 | 西京学院 | With CeO2CeO with frame material as carrier2Preparation method of/S composite material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840143A (en) * | 2014-03-19 | 2014-06-04 | 中南大学 | A kind of preparation method of S/TiO2 composite material for positive electrode of lithium-sulfur battery |
CN104659338A (en) * | 2015-03-17 | 2015-05-27 | 东莞市迈科科技有限公司 | Preparation method of cathode material for lithium-sulfur battery |
CN105098137A (en) * | 2014-05-09 | 2015-11-25 | 宁德时代新能源科技有限公司 | Lithium ion battery, and anode material and preparation method thereof |
CN105529460A (en) * | 2015-11-23 | 2016-04-27 | 湘潭大学 | Lithium-sulfur battery positive electrode material, its preparation method and lithium-sulfur battery |
-
2017
- 2017-06-20 CN CN201710468046.XA patent/CN107293715B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840143A (en) * | 2014-03-19 | 2014-06-04 | 中南大学 | A kind of preparation method of S/TiO2 composite material for positive electrode of lithium-sulfur battery |
CN105098137A (en) * | 2014-05-09 | 2015-11-25 | 宁德时代新能源科技有限公司 | Lithium ion battery, and anode material and preparation method thereof |
CN104659338A (en) * | 2015-03-17 | 2015-05-27 | 东莞市迈科科技有限公司 | Preparation method of cathode material for lithium-sulfur battery |
CN105529460A (en) * | 2015-11-23 | 2016-04-27 | 湘潭大学 | Lithium-sulfur battery positive electrode material, its preparation method and lithium-sulfur battery |
Also Published As
Publication number | Publication date |
---|---|
CN107293715A (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101533900B (en) | Phosphorus composite material for electrochemical reversible lithium storage and preparation method thereof | |
CN107293715B (en) | A kind of lithium-sulphur cell positive electrode S/CNT-CeO2The preparation method of composite material | |
CN110112419A (en) | It can the MXene aeroge cathode of lithium collector and preparation method thereof of high magnification fast charging and discharging, application | |
CN105185963B (en) | Rich nitrogen type carbon composite electrode material of a kind of high-performance and preparation method thereof | |
CN103840143A (en) | A kind of preparation method of S/TiO2 composite material for positive electrode of lithium-sulfur battery | |
CN105742695B (en) | A kind of lithium ion battery and preparation method thereof | |
CN103474723A (en) | Lithium-air battery and preparation method thereof | |
CN112133909B (en) | Antimony sulfide-based negative electrode material for lithium ion battery and preparation method thereof | |
CN103872330A (en) | Lithium ion battery negative electrode material and preparation method thereof | |
CN104701541A (en) | A kind of WS2 makes positive aluminum ion battery and preparation method thereof | |
CN108306012A (en) | A kind of anti-flatulence lithium titanate material of high magnification and preparation method thereof | |
CN107785537A (en) | A kind of method of modifying of new type lithium ion battery anode pole piece, its purposes and pole piece | |
CN106876684A (en) | A kind of lithium battery silicium cathode material, negative plate and the lithium battery prepared with it | |
CN103474671B (en) | A kind of lithium-air battery carbon-lithium peroxide anode and preparation method thereof | |
CN107732171A (en) | One-dimensional porous carbon coating manganese monoxide combination electrode material and preparation method | |
CN108807912A (en) | A kind of C@SnOx(x=0,1,2)The preparation and application of the mesoporous shape hollow nano spherical structures of@C | |
CN105304866A (en) | Lithium sulfur battery cathode containing magnesium metal powder and preparation method thereof | |
CN109360961B (en) | Hollow composite microsphere for lithium-sulfur battery positive electrode material and preparation method thereof | |
CN111082028A (en) | High-capacity negative electrode material, preparation method and lithium ion battery | |
CN108963198A (en) | Positive electrode, negative electrode, preparation method thereof and lithium ion battery comprising positive electrode and negative electrode | |
CN115172680A (en) | High-capacity high-rate lithium ion battery and preparation method thereof | |
CN114725313A (en) | Silicon-based negative plate and preparation method and application thereof | |
CN115959671B (en) | Porous carbon network modified silicon oxide composite anode material, preparation and application | |
CN107342434B (en) | Rechargeable aluminum battery using ordered mesoporous carbon as positive electrode material and preparation method thereof | |
CN110683521A (en) | Preparation of a kind of nickel diselenide-graphene composite material and application of sodium electricity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |