CN107224972A - 花球状结构ZnO/ZnWO4光催化剂的合成方法 - Google Patents
花球状结构ZnO/ZnWO4光催化剂的合成方法 Download PDFInfo
- Publication number
- CN107224972A CN107224972A CN201710617784.6A CN201710617784A CN107224972A CN 107224972 A CN107224972 A CN 107224972A CN 201710617784 A CN201710617784 A CN 201710617784A CN 107224972 A CN107224972 A CN 107224972A
- Authority
- CN
- China
- Prior art keywords
- znwo
- zno
- microwave
- deionized water
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1088—Non-supported catalysts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种花球状结构ZnO/ZnWO4光催化剂的合成方法,属于化工行业技术领域。采用硝酸锌(Zn(NO3)·6H2O)和钨酸钠(Na2WO3·2H2O)两种化学试剂原料混合放入去离子水中搅拌均匀,通过微波反应器微波辐射反应后,再通过去离子水和无水乙醇分别反复洗涤后,再经过烘干得到最终产物ZnO/ZnWO4复合光催化剂。对其表面形貌、光催化活性和光解水制氢性能进行了测定,产品性能在降解有机污染物孔雀石绿和光解水制氢的光催化方面有很大提高。采用微波辅助一步合成方法,具有反应时间短、生成的产物均匀、生产过程简洁实用等特点,试样和批量生产性能稳定可靠。
Description
技术领域
本发明涉及一种花球状结构ZnO/ZnWO4光催化剂的合成方法,属于化工行业技术领域。
背景技术
世纪化学家和技术专家所面临的最大技术挑战之一是全球能源供应和相关环境问题。2008年全球能源消耗率达到15 TW,预计到2050年将增长近一倍,我们应用的能源依然是有限的并且不可再生的化石燃料,如煤、石油和天然气。但是,这些化石燃料的燃烧将会引起一系列环境问题。而太阳能是一种自由、丰富和无限可再生的清洁能源,能够满足当前和未来人类的能源需求。因此,太阳能转化为可用能量是非常可取的。目前,许多半导体光催化剂已被用于光解水制氢,对于已经制备的各种光催化剂,仍然存在一些限制其实际应用的缺点,例如,光生电子-空穴对的快速重组与有限的可见光相应。因此,有必要开发高效的可见光光催化剂来满足未来环境和能源技术的要求。ZnO是一种宽禁带半导体氧化物材料,室温下能带宽度为3.37 eV,其激子束缚能为60 meV,由于ZnO在紫外区有较强的激子跃迁发光特性,因而可以广泛应用于光催化实验。ZnWO4由于其自身独特的电子结构与良好光学性质,以及较强的催化性能而备受关注。但是,ZnWO4带隙较宽,其光吸收作用只限于占太阳光谱极少部分的紫外光区。而ZnWO4的基底中引入ZnO可以实现光催化活性的增强,改善ZnWO4的缺点,所以选择ZnO/ZnWO4合成纳米复合材料进行研究具有一定的学术研究价值和应用前景。
发明内容
本发明利用微波辅助水热法合成了ZnO/ZnWO4,一方面利用微波辐射来对合成样品的物理性质以及光催化性能产生影响;另一方面,具备单斜闪锌矿结构的钨酸锌(ZnWO4)已经被广泛研究用于在UV光照射下有机污染物的水分解和矿化。在UV照射下降解MG、MB、CV和RhB时表现出比TiO2更好的光催化活性。然而,因其对可见光的弱响应和光生电子–空穴对的低分离效率阻碍了ZnWO4在实际中的运用,而ZnO具备良好的光电特性、价格低廉和无毒等特点,普遍运用于光催化。本发明将两者复合在一起,期望能产生互补的效果,提升光解水制氢能力。我们在研究中通过微波辐射作用,将ZnO和ZnWO4进行复合,在光催化反应过程中利用它们导带上电子的传输,从而有效减少光生电子与空穴对的重组,提高光催化效率和量子产率。该发明通过ZnO/ZnWO4纳米复合材料结构的建立增强了ZnO/ZnWO4纳米复合材料光催化活性和光解水制氢能力。
本发明解决其技术问题所采用的技术方案是:花球状结构ZnO/ZnWO4复合光催化剂的合成方法,称取硝酸锌(Zn(NO3)·6H2O),质量为1.4875±0.001g、钨酸钠(Na2WO3·2H2O),质量为1.6494±0.001g。将上述化学试剂原料混合放入30 mL去离子水中,搅拌10min,滴加氨水(NH3·H2O),体积为15±1滴,充分搅拌后倒入100 mL聚四氟乙烯内衬的微波反应器中,设定微波水热反应温度为180±2℃,反应时间为150±3 min。微波辐射反应结束后,将生成的白色沉淀物用去离子水和无水乙醇分别反复洗涤4-5次。将沉淀物放入烘干箱,设定烘干温度60±2℃,干燥时间12+0.1h,取出得到最终产物花球状结构ZnO/ZnWO4复合光催化剂。
本发明的有益效果是:采用一步法合成的花球状结构ZnO/ZnWO4复合光催化剂。该复合材料由六方相的ZnO和单斜相的ZnWO4组成。ZnO/ZnWO4保持了较好的花球状结构,与P25相比,复合光催化剂在模拟日光和可见光下对有机污染物孔雀石绿具有较好的光降解效果。另外,复合催化剂在Na2S-Na2SO3溶液中和300 W氙灯的照射下具有较高的产氢速率,ZnWO4单体不具备光解水制氢的能力,但是在复合ZnO后,产氢量有了明显的提高,可以达到143 μmol·g-1,充分体现了所制备的催化剂的优异的产氢性能。同时增加了光生电子的迁移途径,抑制了ZnO/ZnWO4光生电子-空穴对的复合,从而改善其光催化活性。同时,采用微波辅助一步合成方法,具有反应时间短、生成的产物均匀、生产过程简洁实用等特点,试样和批量生产性能稳定可靠。
附图说明
下面结合附图和具体实施方式对本发明做进一步说明。
图1是ZnO/ZnWO4复合光催化剂表面形貌图。
图2是ZnO/ZnWO4复合光催化剂表面形貌图。
图3是ZnO/ZnWO4复合光催化剂表面形貌图。
图4是直接光降解、P25、ZnO、ZnWO4和ZnO/ZnWO4的模拟日光催化降解孔雀石绿反应速率图。
图5是直接光降解、P25、ZnO、ZnWO4和ZnO/ZnWO4的可见光催化降解孔雀石绿反应速率图。
图6是直接光降解、P25、ZnO、ZnWO4和ZnO/ZnWO4的可见光催化降解孔雀石绿动力学结果图。
图7是ZnO、ZnWO4和ZnO/ZnWO4的紫外–可见漫射吸收光谱图。
图8是P25、ZnO、ZnWO4和ZnO/ZnWO4在Na2S–Na2SO3溶液中光解水制氢速率图。
具体实施方式
花球状结构ZnO/ZnWO4复合光催化剂,称取购于天津市凯通化学试剂有限公司99.5%的钨酸钠(Na2WO3·2H2O),质量为1.6494 g、购于天津市东丽区天大化学试剂厂99.0%的硝酸锌(Zn(NO3)·6H2O),质量为1.4875 g。将上述两种化学试剂原料混合放入30 mL去离子水中,搅拌10 min,滴加氨水(NH3·H2O),体积为15±1滴,充分搅拌后倒入100 mL聚四氟乙烯内衬的微波反应器中,设定微波水热反应温度为180±2℃,反应时间为150±3 min。微波辐射反应结束后,将生成的白色沉淀物用去离子水和无水乙醇分别反复洗涤4-5次。将沉淀物放入烘干箱,设定烘干温度60±2℃,干燥时间12+0.1h,取出得到最终产物花球状结构ZnO/ZnWO4复合光催化剂。
4复合光催化剂的结构及性能测定:
一、表面形貌
ZnO/ZnWO4样品的表面形貌分析结果见图1—3。由图1可清楚地观察到,样品呈现出花球状结构,花球较匀称。同时,花球由无数个小棒相互连接形成的,小棒是由ZnO与ZnWO4复合在一起形成的。由图2所示,可以看到,每个花球状的ZnWO4/ZnO直径大概在15 μm–16 μm之间,纳米颗粒是由更多的花球形成的。由图1-3所示,本文所合成的材料均是花球状结构明显,大小均匀,形貌统一。
二、光催化性能测定
市售P25、单体ZnO、单体ZnWO4和ZnO/ZnWO4的光催化活性进行了降解有机污染物孔雀石绿和光解水制氢的光催化实验。
、降解有机污染物孔雀石绿见图4、图5显示,ZnO/ZnWO4复合材料在模拟日光和可见光下对孔雀石绿的降解均呈现出最高的光催化活性,远超过市售P25。另外,不同样品对降解孔雀石绿速率的影响见图6所示。根据实验数据,按照公式-ln(C t /C 0 )=kt+b进行计算,其中,C t 为染料在t时刻的浓度(mg·L-1),C 0 是染料初始浓度(mg·L-1),k是速率常数(min-1),b为截距。由图6可见,-ln(C t /C 0 )与反应时间t基本呈线性关系,这说明染料孔雀石绿的降解遵循准一级反应动力学。
、紫外–可见漫反射吸收光谱图如图7所示,ZnO单体的样品在紫外区有很宽的吸收,而在紫外区,ZnWO4/ZnO与ZnO单体样品相比,却表现出了很强的吸收,因光吸收的存在,在很大程度上可以让ZnWO4/ZnO的光催化活性大于ZnO和ZnWO4颗粒的活性。
3、光解水制氢P25、ZnO、ZnWO4和ZnO/ZnWO4在Na2S–Na2SO3溶液中产氢速率结果如图8所示。结果表明,ZnO/ZnWO4复合材料具有最好的产氢能力。
Claims (2)
1.一种花球状结构ZnO/ZnWO4光催化剂的合成方法,其特征是:称取硝酸锌(Zn(NO3)·6H2O),质量为1.4875±0.001g、钨酸钠(Na2WO3·2H2O),质量为1.6494±0.001g。将上述化学试剂原料混合放入30 mL去离子水中,搅拌10 min,滴加氨水(NH3·H2O),体积为15±1滴,充分搅拌后倒入100 mL聚四氟乙烯内衬的微波反应器中,设定微波水热反应温度为180±2℃,反应时间为150±3 min。微波辐射反应结束后,将生成的白色沉淀物用去离子水和无水乙醇分别反复洗涤4-5次。将沉淀物放入烘干箱,设定烘干温度60±2℃,干燥时间12+0.1h,取出得到最终产物花球状结构ZnO/ZnWO4复合光催化剂。
2.根据权利要求1所述的花球状结构ZnO/ZnWO4,其特征是:Zn(NO3)·6H2O,质量为1.4875 g、Na2WO3·2H2O,质量为1.6494 g。将上述化学试剂原料混合放入30 mL去离子水中,搅拌10 min,滴加氨水(NH3·H2O),体积为15滴,充分搅拌后倒入100 mL聚四氟乙烯内衬的微波反应器中,设定微波水热反应温度为180 ℃,反应时间为150 min。微波辐射反应结束后,将生成的白色沉淀物用去离子水和无水乙醇分别反复洗涤4-5次。将沉淀物放入烘干箱,设定烘干温度60 ℃,干燥时间12 h,取出得到最终产物花球状结构ZnO/ZnWO4复合光催化剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710617784.6A CN107224972A (zh) | 2017-07-26 | 2017-07-26 | 花球状结构ZnO/ZnWO4光催化剂的合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710617784.6A CN107224972A (zh) | 2017-07-26 | 2017-07-26 | 花球状结构ZnO/ZnWO4光催化剂的合成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107224972A true CN107224972A (zh) | 2017-10-03 |
Family
ID=59957216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710617784.6A Pending CN107224972A (zh) | 2017-07-26 | 2017-07-26 | 花球状结构ZnO/ZnWO4光催化剂的合成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107224972A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108993556A (zh) * | 2018-08-09 | 2018-12-14 | 贵州理工学院 | 硅掺杂钨酸锌/氧化锌复合材料、制备方法及其应用 |
CN109179559A (zh) * | 2018-01-17 | 2019-01-11 | 赵兴海 | 一种光催化材料催化降解芳胺废水的方法 |
CN112871209A (zh) * | 2021-02-18 | 2021-06-01 | 上海应用技术大学 | 一种高效光催化制氢催化体系及其制备方法 |
CN113550025A (zh) * | 2021-06-29 | 2021-10-26 | 安徽大学 | 一种钨酸锌/氧化锌异质纳米纤维及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775989A (zh) * | 2012-07-07 | 2012-11-14 | 河北联合大学 | 一种铽掺杂的钨酸锌长余辉纳米棒阵列的合成方法 |
CN103274443A (zh) * | 2013-04-22 | 2013-09-04 | 华东师范大学 | 一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料及其制备方法 |
CN105126855A (zh) * | 2015-07-15 | 2015-12-09 | 浙江大学 | ZnO/ZnFe2O4/C纳米结构空心球及其制备方法 |
CN106311307A (zh) * | 2016-08-22 | 2017-01-11 | 江苏大学 | 一种制备异质结光催化剂的方法 |
CN106902844A (zh) * | 2017-02-15 | 2017-06-30 | 辽宁科技大学 | 氧化锌‑硫化锌异质结纳米线阵列及其制备方法和应用 |
-
2017
- 2017-07-26 CN CN201710617784.6A patent/CN107224972A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775989A (zh) * | 2012-07-07 | 2012-11-14 | 河北联合大学 | 一种铽掺杂的钨酸锌长余辉纳米棒阵列的合成方法 |
CN103274443A (zh) * | 2013-04-22 | 2013-09-04 | 华东师范大学 | 一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料及其制备方法 |
CN105126855A (zh) * | 2015-07-15 | 2015-12-09 | 浙江大学 | ZnO/ZnFe2O4/C纳米结构空心球及其制备方法 |
CN106311307A (zh) * | 2016-08-22 | 2017-01-11 | 江苏大学 | 一种制备异质结光催化剂的方法 |
CN106902844A (zh) * | 2017-02-15 | 2017-06-30 | 辽宁科技大学 | 氧化锌‑硫化锌异质结纳米线阵列及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
FANGZHI WANG 等: "Fabrication of FeWO4@ZnWO4/ZnO Heterojunction Photocatalyst: Synergistic Effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO Heterojunction Structure on the Enhancement of Visible-Light Photocatalytic Activity", 《ACS SUSTAINABLE CHEMISTRY & ENGINEERING》 * |
IVANA LJ. VALIDZIC 等: "Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ZnWO4 rod-like nanoparticles", 《MATERIALS SCIENCE AND ENGINEERING: B》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109179559A (zh) * | 2018-01-17 | 2019-01-11 | 赵兴海 | 一种光催化材料催化降解芳胺废水的方法 |
CN108993556A (zh) * | 2018-08-09 | 2018-12-14 | 贵州理工学院 | 硅掺杂钨酸锌/氧化锌复合材料、制备方法及其应用 |
CN108993556B (zh) * | 2018-08-09 | 2021-01-19 | 贵州理工学院 | 硅掺杂钨酸锌/氧化锌复合材料、制备方法及其应用 |
CN112871209A (zh) * | 2021-02-18 | 2021-06-01 | 上海应用技术大学 | 一种高效光催化制氢催化体系及其制备方法 |
CN113550025A (zh) * | 2021-06-29 | 2021-10-26 | 安徽大学 | 一种钨酸锌/氧化锌异质纳米纤维及其制备方法和应用 |
CN113550025B (zh) * | 2021-06-29 | 2023-01-17 | 安徽大学 | 一种钨酸锌/氧化锌异质纳米纤维及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103331175B (zh) | 一种采用片层MoS2制备MoS2/ZnIn2S4纳米片复合材料的方法 | |
CN110385146B (zh) | 一种Ni0.85Se/PDA/g-C3N4复合光催化剂及其应用 | |
CN105214656A (zh) | 金纳米团簇-金纳米粒子-二氧化钛复合光催化剂及应用 | |
CN106669744B (zh) | 一种Ag2Mo2O7@AgBr复合光催化剂及其制备方法 | |
CN107224972A (zh) | 花球状结构ZnO/ZnWO4光催化剂的合成方法 | |
CN104001496A (zh) | 一种BiVO4纳米片复合型光催化剂及其制备方法和应用 | |
CN103240073B (zh) | 一种Zn2+掺杂BiVO4可见光催化剂及其制备方法 | |
CN107159273A (zh) | 一种BiOCl纳米光催化剂的制备方法及制得的光催化剂和应用 | |
CN105728008B (zh) | 一种制备AgCl/Bi2O2CO3复合光催化材料的方法及其产品 | |
CN105903485A (zh) | 一种具有可见光响应的多孔氮化碳/羟基铁纳米棒复合光芬顿材料的合成方法 | |
Chen et al. | Facile synthesis of AgBr@ ZIF-8 hybrid photocatalysts for degradation of Rhodamine B | |
CN102671674A (zh) | 一种磁载溴化银光催化材料及其制备方法 | |
CN109731583A (zh) | 一种两步法制备Zn0.2Cd0.8S/rGO复合材料的方法 | |
CN104138763B (zh) | Ag3PO4/TiOF2复合光催化剂的制备方法 | |
CN102631909B (zh) | 表面氢化的二氧化钛纳米线微球光催化材料及其制备方法 | |
CN106215967A (zh) | 一种g‑C3N4量子点、Ag量子点敏化Bi2MoO6纳米片的制备方法 | |
CN107282071B (zh) | 一种球状AgInS2/Bi2S3异质结光催化材料及其制备方法和应用 | |
CN104128180A (zh) | 电子束辐照法合成氧化亚铜/石墨烯光催化复合纳米材料的方法 | |
CN103934005B (zh) | 一种亚铜离子掺杂的硫化锌铜纳米线可见光催化剂及其制备成法和应用 | |
CN103785429A (zh) | 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法 | |
CN106582758B (zh) | 层级纳米结构Bi2O3/(BiO)2CO3的制备 | |
CN110026207B (zh) | CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用 | |
CN103521244B (zh) | 一种光催化分解水制氢材料CdS/Sr1.6Zn0.4Nb2O7及其制备方法 | |
CN109382088B (zh) | SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法 | |
CN104492464A (zh) | 一种碘化银/β型氧化铋复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171003 |