CN107192469A - A kind of low temperature temperature element based on layered cobalt oxide - Google Patents
A kind of low temperature temperature element based on layered cobalt oxide Download PDFInfo
- Publication number
- CN107192469A CN107192469A CN201710421121.7A CN201710421121A CN107192469A CN 107192469 A CN107192469 A CN 107192469A CN 201710421121 A CN201710421121 A CN 201710421121A CN 107192469 A CN107192469 A CN 107192469A
- Authority
- CN
- China
- Prior art keywords
- metal electrode
- cobalt oxide
- temperature
- wire
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000428 cobalt oxide Inorganic materials 0.000 title claims abstract description 30
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 128
- 239000002184 metal Substances 0.000 claims abstract description 128
- 239000010409 thin film Substances 0.000 claims abstract description 31
- 239000010408 film Substances 0.000 claims abstract description 30
- 239000013078 crystal Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000000137 annealing Methods 0.000 claims description 24
- 238000002360 preparation method Methods 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 11
- 238000011065 in-situ storage Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 6
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 5
- 239000013590 bulk material Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 229910002367 SrTiO Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 239000013077 target material Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 238000004549 pulsed laser deposition Methods 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 238000003746 solid phase reaction Methods 0.000 description 3
- 238000010671 solid-state reaction Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/223—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Thermistors And Varistors (AREA)
Abstract
本发明公开一种基于层状钴氧化物的低温测温元件,包括单晶基底、薄膜热敏元件、金属电极Ⅰ、金属电极Ⅱ、金属电极Ⅲ、金属电极Ⅳ、导线Ⅰ、导线Ⅱ,薄膜热敏元件在单晶基底上沿c轴外延生长,在薄膜热敏元件上表面依次设置有等距排列的金属电极Ⅰ、金属电极Ⅱ、金属电极Ⅲ、金属电极Ⅳ,金属电极Ⅰ、金属电极Ⅳ通过导线Ⅰ连接恒流源输出端,金属电极Ⅱ、金属电极Ⅲ通过导线Ⅱ连接电压表输入端,薄膜热敏元件为层状钴氧化物薄膜;本发明测温元件在0℃~‑200℃下电阻温度系数大,电阻温度关系线性好,物理化学性能稳定、成本低廉。
The invention discloses a low-temperature temperature measuring element based on layered cobalt oxide, which includes a single crystal substrate, a thin film thermal element, a metal electrode I, a metal electrode II, a metal electrode III, a metal electrode IV, a wire I, a wire II, a thin film The thermosensitive element is epitaxially grown on the single crystal substrate along the c-axis, and the metal electrode I, metal electrode II, metal electrode III, metal electrode IV, metal electrode I, and metal electrode arranged equidistantly are arranged on the upper surface of the thin film thermosensitive element in sequence. IV is connected to the output end of the constant current source through wire I, and the metal electrode II and metal electrode III are connected to the input end of the voltmeter through wire II. The thin-film thermal element is a layered cobalt oxide film; The temperature coefficient of resistance is large at ℃, the linearity of resistance temperature relationship is good, the physical and chemical properties are stable, and the cost is low.
Description
技术领域technical field
本发明涉及一种基于层状钴氧化物的低温测温元件,属于探测设备技术领域。The invention relates to a low-temperature temperature measuring element based on layered cobalt oxide, which belongs to the technical field of detection equipment.
背景技术Background technique
目前针对-100℃及以下低温的精确测量,工业上最广泛应用的测温元件是Pt100,即纯度≥99.9995%的铂热电阻,这主要由于Pt有较高的电阻温度系数(TCR)~0.374% (0℃),使其探测灵敏度高,且其在低温范围内电阻值与温度近似为线性关系,便于分度和读数。但其仍有众多不足,例如:Pt在还原性气氛中易被还原污染、变脆,必须用保护套管隔离有害气氛;电阻率较小,ρ(0℃)仅为9.8×10-3mΩcm,使在输出相同电压信号下的热电阻体积大,导致其热容量和热惯性大,对温度波动的响应较慢;地球储量小,价格高昂。At present, for the precise measurement of low temperatures below -100°C, the most widely used temperature measuring element in industry is Pt100, that is, platinum thermal resistance with a purity ≥99.9995%, which is mainly due to the high temperature coefficient of resistance (TCR) of Pt ~ 0.374 % (0°C), which makes its detection sensitivity high, and its resistance value has an approximately linear relationship with temperature in the low temperature range, which is convenient for graduation and reading. But it still has many deficiencies, for example: Pt is easily reduced, polluted and brittle in a reducing atmosphere, and a protective sleeve must be used to isolate the harmful atmosphere; the resistivity is small, ρ(0℃) is only 9.8×10 -3 mΩcm , so that the thermal resistance under the same output voltage signal has a large volume, resulting in a large heat capacity and thermal inertia, and a slow response to temperature fluctuations; the earth's reserves are small and the price is high.
发明内容Contents of the invention
针对上述问题,本发明提供一种基于层状钴氧化物的低温测温元件,包括单晶基底、薄膜热敏元件、金属电极Ⅰ、金属电极Ⅱ、金属电极Ⅲ、金属电极Ⅳ、导线Ⅰ、导线Ⅱ,薄膜热敏元件在单晶基底上沿c轴外延生长,在薄膜热敏元件上表面依次设置有等距排列的金属电极Ⅰ、金属电极Ⅱ、金属电极Ⅲ、金属电极Ⅳ,金属电极Ⅰ、金属电极Ⅳ通过导线Ⅰ连接恒流源输出端,金属电极Ⅱ、金属电极Ⅲ通过导线Ⅱ连接电压表输入端,薄膜热敏元件为层状钴氧化物薄膜。In view of the above problems, the present invention provides a low-temperature temperature measuring element based on layered cobalt oxide, including a single crystal substrate, a thin film thermal element, a metal electrode I, a metal electrode II, a metal electrode III, a metal electrode IV, a wire I, Wire II, the thin-film thermal element is epitaxially grown on the single crystal substrate along the c-axis, and the metal electrode I, metal electrode II, metal electrode III, metal electrode IV, metal electrode Ⅰ. The metal electrode IV is connected to the output end of the constant current source through the wire I, and the metal electrode II and the metal electrode III are connected to the input end of the voltmeter through the wire II. The thin-film thermal element is a layered cobalt oxide thin film.
所述单晶基底为(00l)取向的SrTiO3、LaAlO3或(LaxSr1-x)(AlyTa1-y)O3,(LaxSr1-x)(AlyTa1-y)O3中0.1≤x≤0.5,0.5≤y≤0.7。The single crystal substrate is (00 l ) oriented SrTiO 3 , LaAlO 3 or (La x Sr 1-x )(Aly Ta 1-y ) O 3 , (La x Sr 1-x ) (Aly Ta 1 -y ) 0.1 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 0.7 in O 3 .
所述金属电极Ⅰ、金属电极Ⅱ、金属电极Ⅲ、金属电极Ⅳ的材料相同,为Ag、Cu、In或Pt,金属电极Ⅰ、金属电极Ⅱ、金属电极Ⅲ、金属电极Ⅳ之间的间距1-5mm。The metal electrode I, metal electrode II, metal electrode III, and metal electrode IV are made of the same material, which is Ag, Cu, In or Pt, and the distance between metal electrode I, metal electrode II, metal electrode III, and metal electrode IV is 1 -5mm.
所述导线Ⅰ、导线Ⅱ所用材料相同,为Ag或Cu导线,导线1、导线2的直径为0.05-0.2mm。The materials used for the wires I and II are the same, which are Ag or Cu wires, and the diameters of the wires 1 and 2 are 0.05-0.2 mm.
所述层状钴氧化物薄膜为层状Ca3Co4O9+δ薄膜,其制备方法具体包括以下步骤:The layered cobalt oxide film is a layered Ca 3 Co 4 O 9+δ film, and its preparation method specifically includes the following steps:
A、层状钴氧化物多晶块材的制备:将纯度为99.99%的CaCO3、Co3O4粉末按摩尔比Ca:Co=3:4混合、研磨5-10h,在10-20MPa单轴压力下压片成型后在空气气氛、800-850℃下预烧12-24h,然后重新研磨5-10h成粉,在10-20MPa单轴压力下压片成型,在空气气氛、880-900℃下烧结24-36h,获得Ca3Co4O9+δ多晶块材,9+δ本领域表示化学式中氧原子的量在9左右;A. Preparation of layered cobalt oxide polycrystalline block: mix CaCO 3 and Co 3 O 4 powders with a purity of 99.99% at a molar ratio of Ca:Co=3:4, grind for 5-10 hours, After tablet molding under axial pressure, pre-fire in air atmosphere at 800-850°C for 12-24h, then regrind for 5-10h to form powder, press tablet molding under uniaxial pressure of 10-20MPa, in air atmosphere, 880-900 Sintering at ℃ for 24-36 hours to obtain Ca 3 Co 4 O 9+δ polycrystalline block, 9+δ means in the field that the amount of oxygen atoms in the chemical formula is about 9;
B、外延薄膜的制备:以步骤A获得的多晶块材为靶材,用脉冲激光沉积在单晶基底上生长预制薄膜;B. Preparation of epitaxial film: using the polycrystalline bulk material obtained in step A as a target material, and depositing a prefabricated film on a single crystal substrate with pulsed laser;
C、原位退火:将步骤B获得的预制薄膜在静态氧气氛下原位退火,得到c轴外延的层状钴氧化物薄膜。C. In-situ annealing: in-situ annealing the prefabricated film obtained in step B under a static oxygen atmosphere to obtain a c-axis epitaxial layered cobalt oxide film.
步骤B中所述脉冲激光沉积的工艺条件为KrF准分子激光波长248nm,激光脉宽28ns,激光能量密度1-2.5 mJ/cm2,激光频率2-5Hz,背底真空10-4-10-5Pa,生长温度760-800℃,生长流动氧压20-40Pa,生长时间10-40min。The process conditions of pulsed laser deposition in step B are KrF excimer laser wavelength 248nm, laser pulse width 28ns, laser energy density 1-2.5 mJ/cm 2 , laser frequency 2-5Hz, background vacuum 10 -4 -10 - 5 Pa, growth temperature 760-800°C, growth flow oxygen pressure 20-40Pa, growth time 10-40min.
步骤C中所述原位退火的工艺为退火温度780-820℃,退火氧压2×104- 4×104Pa,退火时间10-30min。The in-situ annealing process described in step C is an annealing temperature of 780-820° C., an annealing oxygen pressure of 2×10 4 -4×10 4 Pa, and an annealing time of 10-30 min.
本发明的有益效果是:The beneficial effects of the present invention are:
在测温范围内物理化学性能稳定;电阻温度系数TCR可达0.49% (0℃),探测灵敏度高;30℃~-180℃整个温度范围内电阻率-温度线性关系好,便于分度、读数;有较大的电阻率ρ(0℃)≈4.5-5mΩcm,比Pt100大3个数量级,因此在相同输出电压下,元件的体积和用料显著小,热容量和热惯性小,对温度变化的响应更快;层状钴氧化物材料各向异性,且制备原料为常见的氧化物粉末,成本低廉。The physical and chemical properties are stable within the temperature range; the temperature coefficient of resistance (TCR) can reach 0.49% (0°C), and the detection sensitivity is high; the resistivity-temperature linear relationship is good in the entire temperature range of 30°C~-180°C, which is convenient for graduation and reading ; It has a large resistivity ρ(0℃)≈4.5-5mΩcm, which is 3 orders of magnitude larger than Pt100, so under the same output voltage, the volume and material of the component are significantly smaller, the heat capacity and thermal inertia are small, and the temperature change The response is faster; the layered cobalt oxide material is anisotropic, and the preparation raw material is a common oxide powder, and the cost is low.
附图说明Description of drawings
图1为本发明低温测温元件的剖面结构示意图;Fig. 1 is the cross-sectional structure schematic diagram of the cryogenic temperature measuring element of the present invention;
图2为本发明实施例1中低温测温元件的电阻率-温度曲线;Fig. 2 is the resistivity-temperature curve of low temperature temperature measuring element in the embodiment 1 of the present invention;
图3为本发明实施例2中低温测温元件的电阻率-温度曲线;Fig. 3 is the resistivity-temperature curve of low temperature temperature measuring element in the embodiment 2 of the present invention;
图1中:1-单晶基底,2-薄膜热敏元件,3-导线Ⅰ,4-导线Ⅱ,5-金属电极Ⅰ,6-金属电极Ⅱ,7-金属电极Ⅲ,8-金属电极Ⅳ。In Figure 1: 1-single crystal substrate, 2-thin film thermal element, 3-wire Ⅰ, 4-wire Ⅱ, 5-metal electrode Ⅰ, 6-metal electrode Ⅱ, 7-metal electrode Ⅲ, 8-metal electrode Ⅳ .
具体实施方式detailed description
下面结合附图和具体实施例对本发明进一步详细说明,但本发明的保护范围并不限于所述内容。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments, but the protection scope of the present invention is not limited to the content described.
实施例1Example 1
一种基于层状钴氧化物的低温测温元件,如图1所示,包括单晶基底1、薄膜热敏元件2、导线Ⅰ3、导线Ⅱ4、金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8,薄膜热敏元件2在单晶基底1上沿c轴外延生长,在薄膜热敏元件2上表面设置有依次等距排列有金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8,金属电极Ⅰ5、金属电极Ⅳ8通过导线Ⅰ3连接恒流源输出端,金属电极Ⅱ6、金属电极Ⅲ7通过导线Ⅱ4连接电压表输入端;薄膜热敏元件2为层状钴氧化物薄膜。A low temperature temperature measuring element based on layered cobalt oxide, as shown in Figure 1, including a single crystal substrate 1, a thin film thermal element 2, a wire I3, a wire II4, a metal electrode I5, a metal electrode II6, a metal electrode III7, Metal electrode IV8, the thin-film thermal element 2 is epitaxially grown on the single crystal substrate 1 along the c-axis, and the upper surface of the thin-film thermal element 2 is provided with metal electrodes I5, metal electrodes II6, metal electrodes III7, and metal electrodes arranged equidistantly in sequence. IV8, metal electrode I5 and metal electrode IV8 are connected to the output end of the constant current source through wire I3, and metal electrode II6 and metal electrode III7 are connected to the input end of the voltmeter through wire II4; the film thermal element 2 is a layered cobalt oxide film.
本实施例中单晶基底1为(00l)取向的SrTiO3,金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8的材料相同,为Ag,金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8之间的间距1mm;导线Ⅰ3、导线Ⅱ4所用材料相同,为Cu导线,直径为0.05mm。In this embodiment, the single crystal substrate 1 is (00 l ) oriented SrTiO 3 , the metal electrode I5, the metal electrode II6, the metal electrode III7, and the metal electrode IV8 are made of the same material, which is Ag, the metal electrode I5, the metal electrode II6, and the metal electrode The distance between III7 and metal electrode IV8 is 1 mm; the wire I3 and wire II4 are made of the same material, which is Cu wire with a diameter of 0.05 mm.
本实施例所述层状钴氧化物薄膜为层状Ca3Co4O9+δ薄膜,其制备方法具体包括以下步骤:The layered cobalt oxide film described in this embodiment is a layered Ca 3 Co 4 O 9+δ film, and its preparation method specifically includes the following steps:
A、Ca3Co4O9+δ多晶块材的制备:采用固相反应法,将纯度为99.99%的CaCO3、Co3O4粉末按摩尔比Ca:Co=3:4混合、研磨5h,在10MPa单轴压力下压片成型后在空气气氛、800℃下预烧12h,然后重新研磨5h成粉,在10MPa单轴压力下压片成型,在空气气氛、880℃下烧结24h,获得Ca3Co4O9+δ多晶块材;A. Preparation of Ca 3 Co 4 O 9+δ polycrystalline block: Using solid state reaction method, mix and grind CaCO 3 and Co 3 O 4 powders with a purity of 99.99% in a molar ratio of Ca:Co=3:4 5h, press tablet under 10MPa uniaxial pressure, pre-fire in air atmosphere at 800°C for 12h, then regrind for 5h to form powder, press tablet under 10MPa uniaxial pressure, sinter in air atmosphere at 880°C for 24h, Obtain Ca 3 Co 4 O 9+δ polycrystalline bulk material;
B、外延薄膜的制备:以步骤A获得的Ca3Co4O9+δ多晶块材为靶材,用脉冲激光沉积,以工艺条件为KrF准分子激光波长248nm,激光脉宽28ns,激光能量密度1 mJ/cm2,激光频率2Hz,背底真空10-4Pa,生长温度760℃,生长流动氧压20Pa,生长时间10min,在SrTiO3(001)单晶基底上生长Ca3Co4O9+δ预制薄膜;B. Preparation of epitaxial thin film: use the Ca 3 Co 4 O 9+δ polycrystalline block obtained in step A as the target material, and deposit it with pulsed laser. The process conditions are KrF excimer laser wavelength 248nm, laser pulse width 28ns, laser Energy density 1 mJ/cm 2 , laser frequency 2 Hz, background vacuum 10 -4 Pa, growth temperature 760°C, growth flow oxygen pressure 20 Pa, growth time 10 min, grow Ca 3 Co 4 on SrTiO 3 (001) single crystal substrate O 9+δ prefabricated film;
C、原位退火:将步骤B获得的Ca3Co4O9+δ预制薄膜在静态氧气氛下退火,退火温度780℃,退火氧压2×104Pa,退火时间10min,得到c轴外延的层状Ca3Co4O9+δ薄膜。C. In-situ annealing: anneal the Ca 3 Co 4 O 9+δ prefabricated film obtained in step B under a static oxygen atmosphere, the annealing temperature is 780°C, the annealing oxygen pressure is 2×10 4 Pa, and the annealing time is 10 min, to obtain c-axis epitaxy layered Ca 3 Co 4 O 9+δ films.
将本实施例元件放置在目标测温环境中,通过在金属电极Ⅰ5、金属电极Ⅳ8间输入已知恒流源,并对金属电极Ⅱ6、金属电极Ⅲ7间的电压表读数,通过欧姆定律可推算得到元件在该温度下的电阻及电阻率,进一步对照其电阻率-温度曲线即可得到被测环境温度。Place the components of this embodiment in the target temperature measurement environment, input a known constant current source between the metal electrode I5 and the metal electrode IV8, and read the voltmeter between the metal electrode II6 and the metal electrode III7, and it can be calculated by Ohm's law Obtain the resistance and resistivity of the element at this temperature, and further compare the resistivity-temperature curve to obtain the measured ambient temperature.
本实施例测温元件在26℃~-173℃温度范围内的电阻率-温度曲线见图2,电阻率-温度关系几乎为线性,0℃下电阻温度系数TCR高达0.49%,电阻率ρ≈5mΩ cm。The resistivity-temperature curve of the temperature measuring element in this embodiment in the temperature range of 26°C~-173°C is shown in Figure 2, the resistivity-temperature relationship is almost linear, the temperature coefficient of resistance TCR is as high as 0.49% at 0°C, and the resistivity ρ≈ 5mΩ cm.
实施例2Example 2
一种基于层状钴氧化物的低温测温元件,包括单晶基底1、薄膜热敏元件2、导线Ⅰ3、导线Ⅱ4、金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8,薄膜热敏元件2在单晶基底1上沿c轴外延生长,在薄膜热敏元件2上表面设置有依次等距排列有金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8,金属电极Ⅰ5、金属电极Ⅳ8通过导线Ⅰ3连接恒流源输出端,金属电极Ⅱ6、金属电极Ⅲ7通过导线Ⅱ4连接电压表输入端;薄膜热敏元件2为层状钴氧化物薄膜。A low-temperature temperature measuring element based on layered cobalt oxide, including a single crystal substrate 1, a thin film thermal element 2, a wire I3, a wire II4, a metal electrode I5, a metal electrode II6, a metal electrode III7, a metal electrode IV8, and a thin film thermal sensor The sensitive element 2 is epitaxially grown on the single crystal substrate 1 along the c-axis, and the upper surface of the thin film thermal element 2 is provided with metal electrodes Ⅰ5, metal electrodes Ⅱ6, metal electrodes Ⅲ7, metal electrodes Ⅳ8, metal electrodes Ⅰ5, The metal electrode IV8 is connected to the output end of the constant current source through the wire I3, and the metal electrode II6 and the metal electrode III7 are connected to the input end of the voltmeter through the wire II4; the thin film thermal element 2 is a layered cobalt oxide thin film.
本实施例中单晶基底1为(00l)取向的LaAlO3,金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8的材料相同,为In,金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8之间的间距3mm;导线Ⅰ3、导线Ⅱ4所用材料相同,为Ag导线,直径为0.1mm。In this embodiment, the single crystal substrate 1 is (00 l ) oriented LaAlO 3 , the metal electrode I5, the metal electrode II6, the metal electrode III7, and the metal electrode IV8 are made of the same material, which is In, the metal electrode I5, the metal electrode II6, and the metal electrode The distance between III7 and metal electrode IV8 is 3 mm; the wire I3 and wire II4 are made of the same material, which is Ag wire with a diameter of 0.1 mm.
本实施例所述层状钴氧化物薄膜为层状Ca3Co4O9+δ薄膜,其制备方法具体包括以下步骤:The layered cobalt oxide film described in this embodiment is a layered Ca 3 Co 4 O 9+δ film, and its preparation method specifically includes the following steps:
A、Ca3Co4O9+δ多晶块材的制备:采用固相反应法,将纯度为99.99%的CaCO3、Co3O4粉末按摩尔比Ca:Co=3:4混合、研磨8h,在15MPa单轴压力下压片成型后在空气气氛、820℃下预烧20h,然后重新研磨8h成粉,在15MPa单轴压力下压片成型,在空气气氛、890℃下烧结30h,获得Ca3Co4O9+δ多晶块材;A. Preparation of Ca 3 Co 4 O 9+δ polycrystalline block: Using solid state reaction method, mix and grind CaCO 3 and Co 3 O 4 powders with a purity of 99.99% in a molar ratio of Ca:Co=3:4 8h, after tablet molding under 15MPa uniaxial pressure, pre-fire in air atmosphere at 820°C for 20h, then regrind for 8h into powder, press tablet molding under 15MPa uniaxial pressure, and sinter in air atmosphere at 890°C for 30h, Obtain Ca 3 Co 4 O 9+δ polycrystalline bulk material;
B、外延薄膜的制备:以步骤A获得的Ca3Co4O9+δ多晶块材为靶材,用脉冲激光沉积,工艺条件为KrF准分子激光波长248nm,激光脉宽28ns,激光能量密度1.8 mJ/cm2,激光频率3Hz,背底真空10-4Pa,生长温度780℃,生长流动氧压30Pa,生长时间20min,在LaAlO3(001)单晶基底上生长Ca3Co4O9+δ预制薄膜;B. Preparation of epitaxial thin film: use the Ca 3 Co 4 O 9+δ polycrystalline block obtained in step A as the target, and deposit it with pulsed laser. The process conditions are KrF excimer laser wavelength 248nm, laser pulse width 28ns, and laser energy Density 1.8 mJ/cm 2 , laser frequency 3Hz, background vacuum 10 -4 Pa, growth temperature 780°C, growth flow oxygen pressure 30Pa, growth time 20min, grow Ca 3 Co 4 O on LaAlO 3 (001) single crystal substrate 9+δ prefabricated film;
C、原位退火:将步骤B获得的Ca3Co4O9+δ预制薄膜在静态氧气氛下退火,退火温度800℃,退火氧压3×104Pa,退火时间20min,得到c轴外延的层状Ca3Co4O9+δ薄膜。C. In-situ annealing: anneal the Ca 3 Co 4 O 9+δ prefabricated film obtained in step B under a static oxygen atmosphere, the annealing temperature is 800°C, the annealing oxygen pressure is 3×10 4 Pa, and the annealing time is 20 minutes to obtain c-axis epitaxy layered Ca 3 Co 4 O 9+δ films.
将本实施例元件放置在目标测温环境中,通过在金属电极Ⅰ5、金属电极Ⅳ8间输入已知恒流源,并对金属电极Ⅱ6、金属电极Ⅲ7间的电压表读数,通过欧姆定律可推算得到元件在该温度下的电阻及电阻率,进一步对照其电阻率-温度曲线即可得到被测环境温度。Place the components of this embodiment in the target temperature measurement environment, input a known constant current source between the metal electrode I5 and the metal electrode IV8, and read the voltmeter between the metal electrode II6 and the metal electrode III7, and it can be calculated by Ohm's law Obtain the resistance and resistivity of the element at this temperature, and further compare the resistivity-temperature curve to obtain the measured ambient temperature.
本实施例测温元件在26℃~-173℃温度范围内的电阻率-温度曲线见图2,电阻率-温度关系几乎为线性,0℃电阻温度系数TCR达~0.3%,电阻率ρ≈4.5mΩ cm。The resistivity-temperature curve of the temperature measuring element in this embodiment in the temperature range of 26°C~-173°C is shown in Figure 2, the resistivity-temperature relationship is almost linear, the temperature coefficient of resistance TCR at 0°C reaches ~0.3%, and the resistivity ρ≈ 4.5 mΩ cm.
实施例3Example 3
一种基于层状钴氧化物的低温测温元件,包括单晶基底1、薄膜热敏元件2、导线Ⅰ3、导线Ⅱ4、金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8,薄膜热敏元件2在单晶基底1上沿c轴外延生长,在薄膜热敏元件2上表面设置有依次等距排列有金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8,金属电极Ⅰ5、金属电极Ⅳ8通过导线Ⅰ3连接恒流源输出端,金属电极Ⅱ6、金属电极Ⅲ7通过导线Ⅱ4连接电压表输入端;薄膜热敏元件2为层状钴氧化物薄膜。A low-temperature temperature measuring element based on layered cobalt oxide, including a single crystal substrate 1, a thin film thermal element 2, a wire I3, a wire II4, a metal electrode I5, a metal electrode II6, a metal electrode III7, a metal electrode IV8, and a thin film thermal sensor The sensitive element 2 is epitaxially grown on the single crystal substrate 1 along the c-axis, and the upper surface of the thin film thermal element 2 is provided with metal electrodes Ⅰ5, metal electrodes Ⅱ6, metal electrodes Ⅲ7, metal electrodes Ⅳ8, metal electrodes Ⅰ5, The metal electrode IV8 is connected to the output end of the constant current source through the wire I3, and the metal electrode II6 and the metal electrode III7 are connected to the input end of the voltmeter through the wire II4; the thin film thermal element 2 is a layered cobalt oxide thin film.
本实施例中单晶基底为(00l)取向的(La0.3Sr0.7)(Al0.65Ta0.35)O3,金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8的材料相同,为Pt,金属电极Ⅰ5、金属电极Ⅱ6、金属电极Ⅲ7、金属电极Ⅳ8之间的间距5mm;导线Ⅰ3、导线Ⅱ4所用材料相同,为Ag导线,直径为0.2mm。In this example, the single crystal substrate is (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 with (00 l ) orientation, and the materials of metal electrode I5, metal electrode II6, metal electrode III7, and metal electrode IV8 are the same, which is Pt , The distance between the metal electrode I5, metal electrode II6, metal electrode III7, and metal electrode IV8 is 5 mm; the wire I3 and wire II4 are made of the same material, which is Ag wire with a diameter of 0.2 mm.
本实施例所述层状钴氧化物薄膜为层状Ca3Co4O9+δ薄膜,其制备方法具体包括以下步骤:The layered cobalt oxide film described in this embodiment is a layered Ca 3 Co 4 O 9+δ film, and its preparation method specifically includes the following steps:
A、Ca3Co4O9+δ多晶块材的制备:采用固相反应法,将纯度为99.99%的CaCO3、Co3O4粉末按摩尔比Ca:Co=3:4混合、研磨10h,在20MPa单轴压力下压片成型后在空气气氛、850℃下预烧24h,然后重新研磨10h成粉,在20MPa单轴压力下压片成型,在空气气氛、900℃下烧结36h,获得Ca3Co4O9+δ多晶块材;A. Preparation of Ca 3 Co 4 O 9+δ polycrystalline block: Using solid state reaction method, mix and grind CaCO 3 and Co 3 O 4 powders with a purity of 99.99% in a molar ratio of Ca:Co=3:4 10h, press tablet under 20MPa uniaxial pressure, pre-fire in air atmosphere at 850°C for 24h, then regrind for 10h to form powder, press tablet under 20MPa uniaxial pressure, sinter in air atmosphere at 900°C for 36h, Obtain Ca 3 Co 4 O 9+δ polycrystalline bulk material;
B、外延薄膜的制备:以步骤A获得的Ca3Co4O9+δ多晶块材为靶材,用脉冲激光沉积,工艺条件为KrF准分子激光波长248nm,激光脉宽28ns,激光能量密度2.5 mJ/cm2,激光频率4Hz,背底真空10-5Pa,生长温度800℃,生长流动氧压40Pa,生长时间40min,在(La0.3Sr0.7)(Al0.65Ta0.35)O3 (001)单晶基底上生长Ca3Co4O9+δ预制薄膜;B. Preparation of epitaxial thin film: use the Ca 3 Co 4 O 9+δ polycrystalline block obtained in step A as the target, and deposit it with pulsed laser. The process conditions are KrF excimer laser wavelength 248nm, laser pulse width 28ns, and laser energy Density 2.5 mJ/cm 2 , laser frequency 4 Hz, background vacuum 10 -5 Pa, growth temperature 800°C, growth flow oxygen pressure 40 Pa, growth time 40 min, in (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 ( 001) growing a Ca 3 Co 4 O 9+δ prefabricated film on a single crystal substrate;
C、原位退火:将步骤B获得的Ca3Co4O9+δ预制薄膜在静态氧气氛下退火,退火温度820℃,退火氧压4×104Pa,退火时间30min,得到c轴外延的层状Ca3Co4O9+δ薄膜。C. In-situ annealing: anneal the Ca 3 Co 4 O 9+δ prefabricated film obtained in step B under a static oxygen atmosphere, the annealing temperature is 820°C, the annealing oxygen pressure is 4×10 4 Pa, and the annealing time is 30 minutes, to obtain c-axis epitaxy layered Ca 3 Co 4 O 9+δ films.
将本实施例元件放置在目标测温环境中,通过在金属电极Ⅰ5、金属电极Ⅳ8间输入已知恒流源,并对金属电极Ⅱ6、金属电极Ⅲ7间的电压表读数,通过欧姆定律可推算得到元件在该温度下的电阻及电阻率,进一步对照其电阻率-温度曲线即可得到被测环境温度。Place the components of this embodiment in the target temperature measurement environment, input a known constant current source between the metal electrode I5 and the metal electrode IV8, and read the voltmeter between the metal electrode II6 and the metal electrode III7, and it can be calculated by Ohm's law Obtain the resistance and resistivity of the element at this temperature, and further compare the resistivity-temperature curve to obtain the measured ambient temperature.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710421121.7A CN107192469A (en) | 2017-06-07 | 2017-06-07 | A kind of low temperature temperature element based on layered cobalt oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710421121.7A CN107192469A (en) | 2017-06-07 | 2017-06-07 | A kind of low temperature temperature element based on layered cobalt oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107192469A true CN107192469A (en) | 2017-09-22 |
Family
ID=59876448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710421121.7A Pending CN107192469A (en) | 2017-06-07 | 2017-06-07 | A kind of low temperature temperature element based on layered cobalt oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107192469A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155076A (en) * | 1996-09-05 | 1997-07-23 | 马开荣 | Thin-film thermosensitive resistance infrared detector |
CN104701336A (en) * | 2015-02-27 | 2015-06-10 | 河北大学 | High-sensitivity transverse thermoelectric optical detector |
CN104726825A (en) * | 2015-02-27 | 2015-06-24 | 河北大学 | Preparation method of P-type transparent and conductive cobalt oxide metal nano-composite film |
CN106011747A (en) * | 2016-06-08 | 2016-10-12 | 中国科学院新疆理化技术研究所 | Preparation method of flexible thermosensitive films |
CN106350774A (en) * | 2016-09-09 | 2017-01-25 | 昆明理工大学 | A Method for Controlling the Resistivity of High Temperature Thermoelectric Sr3Co4O9 Thin Film |
CN206990123U (en) * | 2017-06-07 | 2018-02-09 | 昆明理工大学 | A kind of low temperature temperature element based on layered cobalt oxide |
-
2017
- 2017-06-07 CN CN201710421121.7A patent/CN107192469A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155076A (en) * | 1996-09-05 | 1997-07-23 | 马开荣 | Thin-film thermosensitive resistance infrared detector |
CN104701336A (en) * | 2015-02-27 | 2015-06-10 | 河北大学 | High-sensitivity transverse thermoelectric optical detector |
CN104726825A (en) * | 2015-02-27 | 2015-06-24 | 河北大学 | Preparation method of P-type transparent and conductive cobalt oxide metal nano-composite film |
CN106011747A (en) * | 2016-06-08 | 2016-10-12 | 中国科学院新疆理化技术研究所 | Preparation method of flexible thermosensitive films |
CN106350774A (en) * | 2016-09-09 | 2017-01-25 | 昆明理工大学 | A Method for Controlling the Resistivity of High Temperature Thermoelectric Sr3Co4O9 Thin Film |
CN206990123U (en) * | 2017-06-07 | 2018-02-09 | 昆明理工大学 | A kind of low temperature temperature element based on layered cobalt oxide |
Non-Patent Citations (1)
Title |
---|
何云丰;曹小涛;刘南南;王栋;: "基于恒流源的高精度空间光学遥感器测温电路", 国外电子测量技术 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gregory et al. | Stability and microstructure of indium tin oxynitride thin films | |
Wan et al. | Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires | |
Sahoo et al. | CaTiO 3 nano ceramic for NTCR thermistor based sensor application | |
US4969956A (en) | Transparent thin film thermocouple | |
Chen et al. | Fabrication and calibration of Pt–10% Rh/Pt thin film thermocouples | |
CN107324799B (en) | Perovskite-like high-temperature thermistor material and preparation method thereof | |
CN107056273A (en) | A kind of double-deck negative tempperature coefficient thermistor and preparation method thereof | |
Zhao et al. | Enhanced thermoelectric property and stability of NiCr–NiSi thin film thermocouple on superalloy substrate | |
CN206990123U (en) | A kind of low temperature temperature element based on layered cobalt oxide | |
Zhao et al. | Effect of nitrogen doping on the thermoelectric properties of ITO-In2O3 thin film thermocouples | |
CN109133201A (en) | Based on the Ni-based perovskite oxide material of A codopes of multicomponent and application method | |
Edwin Suresh Raj et al. | Zinc (II) oxide–yttrium (III) oxide composite humidity sensor | |
CN107192469A (en) | A kind of low temperature temperature element based on layered cobalt oxide | |
CN102608168B (en) | Air-sensitive resistance material and preparation method thereof | |
CN101734731A (en) | Anti-perovskite material with low resistance temperature coefficient and preparation method thereof | |
Kim et al. | Formation of YCrO3 thin films using radio-frequency magnetron sputtering method for a wide range thermistor application | |
CN100541674C (en) | Ceramic compound with negative temperature coefficient for thermistor and method for its preparation | |
Samarasekara et al. | Effect of sputtering conditions on the gas sensitivity of copper oxide thin films | |
Meaden et al. | The hall effect, magnetoresistivity, and magnetic susceptibility of α-manganese at low temperatures | |
Ayerdi et al. | Ceramic pressure sensor based on tantalum thin film | |
CN114920555A (en) | Preparation method of manganese-doped calcium zirconate high-temperature negative temperature coefficient thermistor material | |
CN112110727A (en) | A kind of fluoride doped high temperature negative temperature coefficient thermistor material and preparation method | |
CN106679838A (en) | Thin-film type thermocouple with super high output voltage and preparing method of thin-film type thermocouple | |
CN112811905A (en) | Negative temperature coefficient thermistor material for high temperature and manufacturing method thereof | |
Sharma et al. | Design, fabrication and calibration of low cost thermopower measurement set up in low-to mid-temperature range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170922 |
|
RJ01 | Rejection of invention patent application after publication |