CN106784677A - A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method - Google Patents
A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method Download PDFInfo
- Publication number
- CN106784677A CN106784677A CN201611175207.8A CN201611175207A CN106784677A CN 106784677 A CN106784677 A CN 106784677A CN 201611175207 A CN201611175207 A CN 201611175207A CN 106784677 A CN106784677 A CN 106784677A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- lithium
- ion battery
- preparation
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 34
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title abstract description 11
- 239000010406 cathode material Substances 0.000 title description 13
- 239000000463 material Substances 0.000 claims abstract description 66
- 238000003756 stirring Methods 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 238000005245 sintering Methods 0.000 claims abstract 3
- 239000006229 carbon black Substances 0.000 claims abstract 2
- 238000000227 grinding Methods 0.000 claims abstract 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- 239000011572 manganese Substances 0.000 claims description 17
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 150000002815 nickel Chemical class 0.000 claims description 6
- 239000012467 final product Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 229910003002 lithium salt Inorganic materials 0.000 claims description 3
- 159000000002 lithium salts Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 2
- 150000002696 manganese Chemical class 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 3
- 244000248349 Citrus limon Species 0.000 claims 2
- 235000005979 Citrus limon Nutrition 0.000 claims 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 abstract description 47
- 238000000576 coating method Methods 0.000 abstract description 27
- 239000011248 coating agent Substances 0.000 abstract description 26
- 239000002245 particle Substances 0.000 abstract description 10
- 238000001354 calcination Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 3
- 239000007864 aqueous solution Substances 0.000 abstract description 2
- 239000008367 deionised water Substances 0.000 abstract description 2
- 229910021641 deionized water Inorganic materials 0.000 abstract description 2
- 238000003837 high-temperature calcination Methods 0.000 abstract 1
- 239000007791 liquid phase Substances 0.000 abstract 1
- 238000003980 solgel method Methods 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 4
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种锂离子电池富锂正极材料的制备及改进方法,属于锂离子电池正极材料技术领域。其包括正极材料和三类包覆材料,包覆材料为ZrO2、MoO3或C。采用溶胶‑凝胶法水浴搅拌加热得到凝胶,干燥后得到干凝胶,在分别经过低温预烧结和高温煅烧,冷却研磨后得正极材料,然后将制备的正极材料与ZrO2和MnO3包覆材料分散在去离子水中,恒温搅拌,而后静置、过滤、洗涤、干燥,经煅烧得到锂离子电池富锂正极改性材料。而C采用液相包覆法,将正极材料分散在含碳黑的水溶液中,恒温搅拌,静置、过滤、洗涤、干燥,煅烧后得到所需改性材料。本发明制备方法简便、易操作,制备得到的富锂正极改性材料的颗粒粒径分布均匀,结晶度高,包覆后材料倍率性能和循环性均得到明显提高。
The invention relates to a preparation and improvement method of a lithium-rich positive electrode material for a lithium ion battery, and belongs to the technical field of lithium ion battery positive electrode materials. It includes positive electrode materials and three types of coating materials, the coating materials being ZrO 2 , MoO 3 or C. The sol-gel method is used to stir and heat in a water bath to obtain a gel, and to obtain a xerogel after drying. After low-temperature pre-sintering and high-temperature calcination, the positive electrode material is obtained after cooling and grinding, and then the prepared positive electrode material is packaged with ZrO 2 and MnO 3 The coating material is dispersed in deionized water, stirred at a constant temperature, then left to stand, filtered, washed, dried, and calcined to obtain a modified lithium-ion battery lithium-rich positive electrode material. And C uses the liquid phase coating method, disperses the positive electrode material in the aqueous solution containing carbon black, stirs at constant temperature, stands still, filters, washes, dries, and obtains the desired modified material after calcination. The preparation method of the invention is simple and easy to operate, and the prepared lithium-rich cathode modified material has uniform particle size distribution and high crystallinity, and the rate performance and cycle performance of the coated material are significantly improved.
Description
技术领域technical field
本发明涉及一种锂离子电池富锂正极材料的制备及改进方法,属于锂离子电池正极材料技术领域。The invention relates to a preparation and improvement method of a lithium-rich positive electrode material for a lithium ion battery, and belongs to the technical field of lithium ion battery positive electrode materials.
背景技术Background technique
锂离子电池作为绿色二次电池,因其比容量高、功率密度大、循环寿命长等特征而被广泛的应用于各类数码电子产品和通讯设备。就现在锂离子电池的发展进程而言,与迅速发展的锂离子电池负极材料和电解液相比,正极材发展相对缓慢;而就其大规模推广而言,正极材料在其成本与性能方面都占据了主导因素。因此,开发价格低廉、安全性能优异的正极材料是促进锂离子电池商业化推广的关键。目前主要的正极材料包括:LiCoO2、LiNiO2、LiMn2O4、LiCoO2/LiNiO2/LiMn2O4的三元共熔体系以及高比容量的富锂固溶体体系。LiCoO2电化学性能稳定,但实际容量不及理论的一半,且Co元素价格昂贵、有毒,导致成本高居不下;LiNiO2比容量高,但合成条件极为苛刻;LiMn2O4中锰资源丰富,价格低廉,但循环过程中存在相变,循环稳定性差;三元共熔体系兼具了LiCoO2、LiNiO2、LiMn2O4三类材料的特点,存在明显的三元素协同效应,电化学性能优异,但该体系的比容量仍旧相对较低,难以满足电动汽车对高容量、高能量密度的发展需求。近年来,富锂固溶体正极材料因其比容量高、价格低的明显优势而成为研究热点。As a green secondary battery, lithium-ion batteries are widely used in various digital electronic products and communication equipment due to their high specific capacity, high power density, and long cycle life. As far as the current development process of lithium-ion batteries is concerned, compared with the rapidly developing negative electrode materials and electrolytes of lithium-ion batteries, the development of positive electrode materials is relatively slow; and in terms of its large-scale promotion, positive electrode materials are inferior in terms of cost and performance. dominant factor. Therefore, the development of cathode materials with low price and excellent safety performance is the key to promote the commercialization of lithium-ion batteries. At present, the main positive electrode materials include: LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoO 2 /LiNiO 2 /LiMn 2 O 4 ternary eutectic system and high specific capacity lithium-rich solid solution system. The electrochemical performance of LiCoO 2 is stable, but the actual capacity is less than half of the theoretical capacity, and Co element is expensive and toxic, resulting in high cost; LiNiO 2 has high specific capacity, but the synthesis conditions are extremely harsh; LiMn 2 O 4 is rich in manganese resources, and the price Inexpensive, but there is a phase change during the cycle, and the cycle stability is poor; the ternary eutectic system combines the characteristics of LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 materials, and there is an obvious synergistic effect of the three elements, and the electrochemical performance is excellent , but the specific capacity of this system is still relatively low, which is difficult to meet the development needs of electric vehicles for high capacity and high energy density. In recent years, lithium-rich solid solution cathode materials have become a research hotspot due to their obvious advantages of high specific capacity and low price.
富锂正极材料的通式为xLi2MnO3·(1-x)LiMnO2,该类材料具有不同于传统正极材料的充电机制。当充电电压高于4.5V时,富锂材料的充电曲线会在4.5V左右出现一个较长的脱锂脱氧平台,对应着Li2MnO3结构的活化,结构发生重组,形成更有序的层状结构,从而使得后续的放电过程中依然具有比较高的放电比容量。然而该类材料存在首次能量利用率低,不可逆容量损失大,大电流密度下倍率性能差的问题。The general formula of lithium-rich cathode materials is xLi 2 MnO 3 ·(1-x)LiMnO 2 , and this type of materials has a charging mechanism different from traditional cathode materials. When the charging voltage is higher than 4.5V, the charging curve of the lithium-rich material will appear a longer delithiation and deoxidation platform around 4.5V, corresponding to the activation of the Li 2 MnO 3 structure, and the structure will be reorganized to form a more ordered layer shape structure, so that the subsequent discharge process still has a relatively high discharge specific capacity. However, this type of material has the problems of low initial energy utilization, large irreversible capacity loss, and poor rate performance at high current density.
针对目前富锂正极材料尚存的不足,可以通过表面包覆改性提高材料电化学性能,包覆的主要目的是在正极材料表面附着一层化学性质稳定的化合物,有效的抑制正极活性材料与电解液之间的副反应,在维持材料表面结构完整和稳定的同时也在一定程度上抑制了电解液的分解。与此同时,包覆还有利于提高材料电导率和离子传导率,使得包覆后材料电化学性能更优异。In view of the shortcomings of the current lithium-rich cathode materials, the electrochemical performance of the material can be improved through surface coating modification. The main purpose of coating is to attach a layer of chemically stable compounds on the surface of the cathode material, which can effectively inhibit the positive electrode active material. The side reaction between the electrolytes, while maintaining the integrity and stability of the surface structure of the material, also inhibits the decomposition of the electrolyte to a certain extent. At the same time, coating is also conducive to improving the electrical conductivity and ion conductivity of the material, making the electrochemical performance of the coated material more excellent.
发明内容Contents of the invention
本发明的目的在于克服上述不足之处,提供一种锂离子电池富锂正极材料的制备及改进方法。而且,富锂正极材料不含价格高且有毒性的钴元素Co。The object of the present invention is to overcome the above disadvantages and provide a preparation and improvement method of lithium-rich positive electrode materials for lithium-ion batteries. Moreover, lithium-rich cathode materials do not contain the expensive and toxic cobalt element Co.
按照本发明提供的技术方案,一种锂离子电池富锂正极改性材料,包括正极材料和包覆材料,包覆材料层包覆于正极材料的外层;According to the technical solution provided by the present invention, a modified lithium-ion battery lithium-rich positive electrode material includes a positive electrode material and a coating material, and the coating material layer is coated on the outer layer of the positive electrode material;
所述的正极材料为Li[Li0.2Ni0.2Mn0.61]O2;所述包覆材料为ZrO2、MoO3或C,所述包覆材料ZrO2与正极材料质量比为1-6wt%,所述包覆材料MoO3或C与正极材料质量比为1-6wt%。The positive electrode material is Li[Li 0.2 Ni 0.2 Mn 0.61 ]O 2 ; the coating material is ZrO 2 , MoO3 or C, and the mass ratio of the coating material ZrO 2 to the positive electrode material is 1-6 wt%. The mass ratio of the coating material MoO3 or C to the positive electrode material is 1-6wt%.
所述锂离子电池富锂正极改性材料的制备方法,步骤如下:The preparation method of the lithium-rich positive electrode modified material of the lithium ion battery, the steps are as follows:
(1)混合:按照锂∶镍∶锰的摩尔比为1.2~1.35∶0.20~0.255∶0.60~0.65取料,加入柠檬酸,所述镍盐、镍盐和锰盐的总摩尔量与柠檬酸的摩尔比为1∶1~1.15∶1.55间;混合均匀之后,用氨水将混合溶液的pH调节至7~8;(1) mixing: according to lithium: nickel: the mol ratio of manganese is 1.2~1.35: 0.20~0.255: 0.60~0.65 take material, add citric acid, the total molar weight of described nickel salt, nickel salt and manganese salt and citric acid The molar ratio is between 1:1~1.15:1.55; after mixing evenly, adjust the pH of the mixed solution to 7~8 with ammonia water;
(2)加热:将步骤(1)所得溶液在70~90℃水浴搅拌加热,得到凝胶体;(2) Heating: Stir and heat the solution obtained in step (1) in a 70-90°C water bath to obtain a gel;
(3)干燥:将步骤(2)所得凝胶体于100~150℃下干燥18~30小时,得到干凝胶体;(3) drying: drying the gel body obtained in step (2) at 100-150° C. for 18-30 hours to obtain a dry gel body;
(4)前驱体的制备:将步骤(3)制备所得干凝胶体在400~600℃预烧结5~10小时,自然冷却至室温后研磨得到前驱体;(4) Preparation of precursor: Pre-sinter the dry gel obtained in step (3) at 400-600°C for 5-10 hours, cool naturally to room temperature and grind to obtain the precursor;
(5)正极材料的制备:将步骤(4)所得前驱体粉末转入坩埚,置于800~1000℃下焙烧10~18小时,冷却后充分研磨得到正极材料;(5) Preparation of positive electrode material: transfer the precursor powder obtained in step (4) into a crucible, place it at 800-1000° C. for 10-18 hours, and fully grind it after cooling to obtain the positive electrode material;
(6)改性:在步骤(5)制备所得的正极材料中加入1~6wt%的包覆材料ZrO2或MoO3,然后将混合物分散于6~10倍质量的溶剂中,在40~60℃下剧烈搅拌,使正极材料和包覆材料分散均匀,直至溶剂基本挥发,于70~100℃下干燥18~25小时,最后在400~600℃下烧结5~10小时即得锂离子电池富锂正极改性材料;(6) Modification: Add 1 to 6 wt% of the coating material ZrO 2 or MoO to the positive electrode material prepared in step (5), then disperse the mixture in a solvent with 6 to 10 times the mass, Stir vigorously under high temperature to disperse the positive electrode material and coating material evenly until the solvent is basically volatilized, dry at 70-100°C for 18-25 hours, and finally sinter at 400-600°C for 5-10 hours to obtain a lithium-ion battery rich in lithium positive electrode modification materials;
或在步骤(5)制备所得正极材料和1-6wt%的包覆材料C分散于6~10倍质量的,质量浓度为1%~6%的C的水溶液中,在40~60℃下剧烈搅拌,使正极材料和包覆材料C分散均匀,直至溶剂基本挥发,于70~100℃下干燥18~25小时,最后在400~60℃下在氮气保护下烧结5~10h即得锂离子电池富锂正极改性材料。Or prepare the positive electrode material and 1-6wt% coating material C in step (5) and disperse in 6-10 times the mass of an aqueous solution of C with a mass concentration of 1%-6%, and vigorously Stir to disperse the positive electrode material and coating material C evenly until the solvent is basically volatilized, dry at 70-100°C for 18-25 hours, and finally sinter at 400-60°C under nitrogen protection for 5-10 hours to obtain a lithium-ion battery Lithium-rich positive electrode modification material.
所述锂盐中的锂源为LiNO3、CH3COOLi、LiOH中的一种或多种;镍盐中的镍源为Ni(NO3)2、Ni(CH3COO)2、NiSO4中的一种或多种。The lithium source in the lithium salt is one or more of LiNO 3 , CH 3 COOLi, LiOH; the nickel source in the nickel salt is Ni(NO 3 ) 2 , Ni(CH 3 COO) 2 , NiSO 4 one or more of .
步骤(6)所述溶剂为蒸馏水或乙醇。The solvent described in step (6) is distilled water or ethanol.
本发明的有益效果:本发明制备方法工艺简单,易于操作,所得富锂正极材料纯度高、粒径小且分布均匀,颗粒分散度好。包覆材料的存在抑制了电解液对活性材料表面的腐蚀及界面副反应的发生,从而维持了材料界面的稳定性,减小了循环过程中的阻抗,Li+的扩散速率得到提高,同时保留了更多的锂空位及氧空位,从而确保了锂离子的顺利脱嵌,包覆改性提高了材料倍率性能和循环性能,降低了工艺成本,有利于推进商品化的进程。Beneficial effects of the present invention: the preparation method of the present invention has simple process and is easy to operate, and the obtained lithium-rich positive electrode material has high purity, small particle size and uniform distribution, and good particle dispersion. The presence of the coating material inhibits the corrosion of the electrolyte on the surface of the active material and the occurrence of interfacial side reactions, thereby maintaining the stability of the material interface, reducing the impedance during the cycle, and improving the diffusion rate of Li + while retaining More lithium vacancies and oxygen vacancies are created, thereby ensuring the smooth deintercalation of lithium ions. The coating modification improves the rate performance and cycle performance of the material, reduces the process cost, and is conducive to promoting the commercialization process.
附图说明Description of drawings
图1为实施例1~4制备的正极材料的X-射线衍射图。Fig. 1 is the X-ray diffraction pattern of the cathode materials prepared in Examples 1-4.
图2为实施例1~4制备的正极材料的扫描电镜图。FIG. 2 is a scanning electron microscope image of the positive electrode materials prepared in Examples 1-4.
图3为实施例1~4制备的正极材料,常温时0.2C电流下的首次充放电曲线图,放电电压范围为2-4.8V。Fig. 3 is the first charge and discharge curves of the positive electrode materials prepared in Examples 1-4 at room temperature at a current of 0.2C, and the discharge voltage range is 2-4.8V.
图4为实施例1~4制备的正极材料,常温时0.2C电流下的循环曲线图,充放电电压范围为2-4.8V。Fig. 4 is a cycle graph of positive electrode materials prepared in Examples 1-4 at room temperature under a current of 0.2C, and the charging and discharging voltage range is 2-4.8V.
图5为实施例1~4制备的正极材料,在常温时在不同倍率下的循环曲线图,充放电电压范围为2-4.8V。Fig. 5 is a graph showing cycle curves of positive electrode materials prepared in Examples 1-4 at different rates at room temperature, and the charging and discharging voltage range is 2-4.8V.
具体实施方式detailed description
下面将结合具体附图及实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with specific drawings and embodiments.
实施例1一种锂离子电池富锂正极材料为Li[Li0.2Ni0.2Mn0.6]O2,包括如下步骤:Example 1 A lithium-rich cathode material for a lithium ion battery is Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 , comprising the following steps:
(1)混合:按照化学计量比(1.26∶0.20∶0.60)称取分析纯的CH3COOLi·2H2O、Ni(CH3COO)2·4H2O、Mn(CH3COO)·4H2O,分别溶于去离子水中,逐渐滴加柠檬酸溶液,柠檬酸溶液的加入量等于过渡金属离子的摩尔量之和,用浓氨水将混合溶液的PH值调节至7左右;(1) Mixing: Weigh analytically pure CH 3 COOLi·2H 2 O, Ni(CH 3 COO) 2 ·4H 2 O, Mn(CH 3 COO)·4H 2 according to the stoichiometric ratio (1.26:0.20:0.60) O, be dissolved in deionized water respectively, gradually add dropwise citric acid solution, the addition of citric acid solution is equal to the sum of the molar weights of transition metal ions, and the pH value of the mixed solution is adjusted to about 7 with strong ammonia water;
(2)加热:将步骤(1)得到的混合溶液体系于80℃的水浴中加热搅拌以蒸发水分,逐渐得到凝胶体;(2) Heating: heat and stir the mixed solution system obtained in step (1) in a water bath at 80° C. to evaporate water, and gradually obtain a gel;
(3)干燥:将步骤(2)得到的凝胶体于120℃鼓风干燥箱中烘24h,得到干凝胶;(3) Drying: drying the gel body obtained in step (2) in a blast drying oven at 120°C for 24 hours to obtain a xerogel;
(4)前驱体的制备:将干燥的凝胶体进行预烧,预烧温度为500℃,预烧时间为6小时,得到前驱体;冷却至室温后研磨;(4) Precursor preparation: pre-calcining the dried gel at a temperature of 500°C and a pre-calcination time of 6 hours to obtain a precursor; cool to room temperature and grind;
(5)正极材料的制备:将研磨后的前驱体于900℃下进行高温煅烧,煅烧时间为12小时,充分冷后研磨,即得到正极材料Li[Li0.2Ni0.2Mn0.6]O2。(5) Preparation of positive electrode material: The ground precursor was calcined at 900°C for 12 hours, cooled sufficiently and then ground to obtain the positive electrode material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 .
实施例2一种表面包覆3wt%ZrO2的锂离子电池富锂正极材Li[Li0.2Ni02Mn0.6]O2,包括如下步骤:Example 2 A lithium-rich positive electrode material Li[Li 0.2 Ni 02 Mn 0.6 ]O 2 for a lithium ion battery coated with 3wt% ZrO 2 on the surface, comprising the following steps:
将实施例1制备好的Li[Li0.2Ni0.2Mn0.61]O2正极材料和质量分数比为3wt%ZrO2分散至10倍质量的乙醇溶液中,40℃下加热搅拌,直至溶剂基本挥发完全,于80℃条件下干燥24小时,最后450℃煅烧6h即得到最终产物表面包覆3wt%ZrO2的Li[Li0.2Ni0.2Mn0.6]O2。Disperse the Li[Li 0.2 Ni 0.2 Mn 0.61 ]O 2 positive electrode material prepared in Example 1 and 3wt% ZrO 2 in an ethanol solution with a mass fraction ratio of 10 times the mass, and heat and stir at 40°C until the solvent is basically completely volatilized , dried at 80°C for 24 hours, and finally calcined at 450°C for 6 hours to obtain the final product Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 coated with 3wt% ZrO 2 on the surface.
实施例3一种表面包覆3wt%MoO3的锂离子电池富锂正极材Li[Li0.2Ni0.2Mn0.6]O2,包括如下步骤:Example 3 A lithium-rich positive electrode material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 for a lithium ion battery coated with 3wt% MoO3 on its surface, comprising the following steps:
将制备好的Li[Li0.2Ni0.2Mn0.6]O2正极材料和质量分数比分别为3wt%MoO3分散至6倍质量的乙醇溶液中,40℃下加热搅拌,直至溶剂基本挥发完全,于80℃条件下干燥24小时,最后450℃煅烧6h即得到最终产物表面包覆3wt%MoO3Li[Li0.2Ni0.15Mn0.55Co0.1]O2。Disperse the prepared Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 positive electrode material and 3wt% MoO3 in an ethanol solution with a mass fraction ratio of 6 times the mass, heat and stir at 40°C until the solvent is basically completely evaporated, and set the temperature at 80 Dry at ℃ for 24 hours, and finally calcined at 450℃ for 6 hours to obtain the final product coated with 3wt% MoO 3 Li[Li 0.2 Ni 0.15 Mn 0.55 Co 0.1 ]O 2 .
实施例4一种表面包覆2wt%C的锂离子电池富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2,包括如下步骤:Example 4 A lithium-rich positive electrode material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 for a lithium ion battery coated with 2wt% C on its surface, comprising the following steps:
将制备好的正极材料和质量分数比为2wt%C分散至乙醇溶液中,40℃下加热搅拌,直至溶剂基本挥发完全,于80℃条件下干燥24小时,最后在氮气中450℃煅烧6h即得到最终产物表面分别包覆2wt%C的Li[Li0.2Ni0.2Mn0.6]O2。Disperse the prepared positive electrode material and 2wt% C in an ethanol solution, heat and stir at 40°C until the solvent is basically completely volatilized, dry at 80°C for 24 hours, and finally calcinate at 450°C in nitrogen for 6h. Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 coated with 2wt% C on the surface of the final product was obtained.
应用实施例1Application Example 1
对实施例1-4所得材料分别进行XRD衍射测试,具体如图1所示;进行电镜扫描,具体如图2所示。XRD diffraction tests were carried out on the materials obtained in Examples 1-4, as shown in Figure 1; electron microscope scanning was carried out, as shown in Figure 2.
由图1中实施例1~4的XRD衍射图谱可知,包覆后各材料具有明显的α-NaFeO2六方晶系层状结构,并没有出现归属于包覆层元素的杂质峰。From the XRD diffraction patterns of Examples 1 to 4 in Figure 1, it can be seen that after coating, each material has an obvious α-NaFeO 2 hexagonal layered structure, and there are no impurity peaks attributed to the elements of the coating layer.
由图2中实施例1~4的SEM图可以看出,未包覆材料粒径较小且分布均匀,颗粒表面平整光滑、轮廓清晰,而经过包覆改性后材料的颗粒表面出现独立存在或团聚在一块的纳米小颗粒,导致材料颗粒有所增大,颗粒之间的轮廓变得不清晰,这表明ZrO2、MoO3与C包覆材料均成功包覆于材料颗粒表面。From the SEM images of Examples 1 to 4 in Figure 2, it can be seen that the particle size of the uncoated material is small and evenly distributed, the particle surface is smooth and smooth, and the outline is clear, while the particle surface of the material after coating modification appears independent existence Or agglomerated nano-sized particles, resulting in material particles enlarged, and the outline between particles becomes unclear, which indicates that ZrO 2 , MoO 3 and C coating materials are all successfully coated on the surface of material particles.
将实施例1~4中合成的正极材料按照m(正极材料)∶m(乙炔黑)∶m(PVDF)=80∶12∶8的质量比混合研磨配成浓浆料(NMP为溶剂),采用Doctor Blade技术,均匀涂布于集流体铝箔上,80℃下烘干,3MPa碾压,制成的正极极片,经80℃真空干燥12小时后使用。The cathode material synthesized in Examples 1 to 4 was mixed and ground according to the mass ratio of m (positive electrode material): m (acetylene black): m (PVDF) = 80: 12: 8 to form a thick slurry (NMP is a solvent), Using Doctor Blade technology, it is evenly coated on the current collector aluminum foil, dried at 80°C, and rolled at 3MPa. The positive electrode sheet was dried under vacuum at 80°C for 12 hours before use.
以锂片为负极极片,1mol/L的LiPF6溶液(EC+DEC体积比为1∶1)为电解液,Celgard2325孔薄膜做隔膜,在充满氩气的手套箱中装配成实验室用扣式(CR2032)测试电池。采用Land测试充放电仪(武汉金诺公司)对组装好的实验电池进行充放电测试,充放电区间为2~4.8V。Lithium sheet is used as negative electrode sheet, 1mol/L LiPF6 solution (EC+DEC volume ratio is 1:1) is used as electrolyte, Celgard2325 pore film is used as diaphragm, and it is assembled into a laboratory button-type in a glove box filled with argon. (CR2032) test battery. The assembled experimental battery was charged and discharged with a Land test charge and discharge instrument (Wuhan Jinnuo Company), and the charge and discharge range was 2 to 4.8V.
由于正极材料的合成过程中存在Li元素的挥发,造成Li含量的减少,从而导致材料晶体结构存在缺陷,因此锂盐的实际摩尔用量要过量5%。Due to the volatilization of Li element in the synthesis process of the positive electrode material, resulting in the reduction of Li content, resulting in defects in the crystal structure of the material, the actual molar amount of the lithium salt should be in excess of 5%.
由图3实施例1~4的正极材料在2~4.8V和0.2C下的首次充放电曲线可知,包覆前后个各材料的首次充电曲线均具有两个典型归属富锂正极材料的充电平台。当充电电压在4.5V以下是对应主体材料中过渡金属的氧化还原;当充电电压上升到4.5V以上时,出现一个较长且较平缓的4.5V平台,对应晶体深度脱锂并伴随晶格脱氧。包覆后4.5V平台依旧存在,说明包覆并没有改变材料的充放电机制。由图还可以看出,包覆后材料的放电比容量增大,首次库伦效率得到提高。From the first charge and discharge curves of the cathode materials in Examples 1 to 4 in Figure 3 at 2 to 4.8V and 0.2C, it can be seen that the first charge curves of each material before and after coating have two typical charging platforms belonging to lithium-rich cathode materials . When the charging voltage is below 4.5V, it corresponds to the redox of the transition metal in the host material; when the charging voltage rises above 4.5V, a longer and gentler 4.5V plateau appears, corresponding to the crystal deep delithiation and accompanied by lattice deoxidation . The 4.5V platform still exists after coating, indicating that the coating does not change the charging and discharging mechanism of the material. It can also be seen from the figure that the discharge specific capacity of the coated material is increased, and the first Coulombic efficiency is improved.
图4为实施例1~4的正极材料在2-4.8V和0.2C下的循环性能图。实施例1中材料在0.2C电流密度下50个循环后容量由衰减为187.9mAh/g,容量保持率为85.7%,而3wt%-ZrO2、3wt%-MoO3和2wt%-C在50个循环周期后容量分别衰减为:218.5mAh/g、212.3mAh/g和222.6mAh/g,容量保持率分别为:94.8%、91.5%和94.6%。说明包覆是提高材料循环性能的有效手段。包覆层的存在有效抑制了电极活性物质与电解液之间的副反应,保持了材料界面的完整和稳定性,从而提高材料的循环性能。Fig. 4 is a cycle performance diagram of the positive electrode materials of Examples 1-4 at 2-4.8V and 0.2C. The capacity of the material in Example 1 is 187.9mAh/g after 50 cycles at a current density of 0.2C, and the capacity retention rate is 85.7%. 3wt%-ZrO 2 , 3wt%-MoO 3 and 2wt%-C After 1 cycle, the capacity fades are 218.5mAh/g, 212.3mAh/g and 222.6mAh/g respectively, and the capacity retention rates are 94.8%, 91.5% and 94.6%, respectively. It shows that coating is an effective means to improve the cycle performance of materials. The existence of the coating layer effectively inhibits the side reaction between the electrode active material and the electrolyte, maintains the integrity and stability of the material interface, thereby improving the cycle performance of the material.
图5为实施例1~4的正极材料在2-4.8V不同电流密度下的倍率性能图。实施例1、2、3、4的正极材料在0.2C下的首周放电比容量分别为:217.9mAh/g、231.1mAh/g、237.7mAh/g、233.9mAh/g,当倍率增大到1C时各材料的放电比容量分别为:142.8mAh/g、165.3mAh/g、172.1mAh/g、176.2mAh/g。由此可知,随倍率的不断增大,各材料的放电比容量均呈现不同程度的衰减,而相比于未包覆材料,包覆后材料在不同倍率下的容量衰减速率得到减缓,1C下仍保持较高的放电比容量。说明包覆可以改善材料的倍率性能。FIG. 5 is a graph of the rate performance of the positive electrode materials of Examples 1-4 at different current densities of 2-4.8V. The positive electrode materials of Examples 1, 2, 3, and 4 have the first discharge specific capacities at 0.2C respectively: 217.9mAh/g, 231.1mAh/g, 237.7mAh/g, and 233.9mAh/g. When the rate increases to The specific discharge capacity of each material at 1C is: 142.8mAh/g, 165.3mAh/g, 172.1mAh/g, 176.2mAh/g. It can be seen that with the increase of the rate, the specific discharge capacity of each material shows different degrees of attenuation. Compared with the uncoated material, the rate of capacity decay of the coated material at different rates is slowed down. Still maintain a high discharge specific capacity. It shows that coating can improve the rate performance of the material.
与未包覆的正极材料相比,本发明中实施例2~4中通过ZrO2、MoO3或C包覆材料对正极材料进行包覆,使得正极材料的初始放电比容量得到提高,循环稳定性得到和倍率性能均得到改善,尤其是实施例4中制备的包覆2.0wt%C的Li[Li0.2Ni0.2Mn0.6]O2的综合性能效果最好。Compared with the uncoated positive electrode material, the positive electrode material is coated with ZrO 2 , MoO 3 or C coating material in Examples 2 to 4 of the present invention, so that the initial discharge specific capacity of the positive electrode material is improved and the cycle is stable. Both performance and rate performance are improved, especially Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 coated with 2.0 wt% C prepared in Example 4 has the best overall performance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611175207.8A CN106784677A (en) | 2016-12-16 | 2016-12-16 | A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611175207.8A CN106784677A (en) | 2016-12-16 | 2016-12-16 | A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106784677A true CN106784677A (en) | 2017-05-31 |
Family
ID=58889987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611175207.8A Pending CN106784677A (en) | 2016-12-16 | 2016-12-16 | A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106784677A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107394133A (en) * | 2017-06-22 | 2017-11-24 | 芜湖浙鑫新能源有限公司 | Anode material for lithium-ion batteries of carbon coating and preparation method thereof |
CN108091852A (en) * | 2017-12-12 | 2018-05-29 | 中国科学院过程工程研究所 | A kind of molybdenum trioxide coated lithium ion battery positive electrode and preparation method thereof |
CN108987708A (en) * | 2018-07-19 | 2018-12-11 | 东北大学秦皇岛分校 | A kind of sodium-ion battery positive material, preparation method and sodium-ion battery |
CN109509874A (en) * | 2018-11-16 | 2019-03-22 | 湖北锂诺新能源科技有限公司 | A kind of preparation method of molybdenum trioxide cladding lithium-rich manganese-based anode material |
CN113511692A (en) * | 2021-07-13 | 2021-10-19 | 天津大学 | Preparation method and application of lithium-rich manganese-based cathode material synthesized by short-time rapid thermal shock method |
CN114203993A (en) * | 2021-12-07 | 2022-03-18 | 北京理工大学 | Li2SeO4Fast ion conductor modified lithium ion battery anode material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403496A (en) * | 2011-12-16 | 2012-04-04 | 江南大学 | A kind of high-capacity lithium-ion battery composite cathode material and its synthesis method |
CN103094577A (en) * | 2013-01-18 | 2013-05-08 | 天津大学 | Modification method of lithium-rich layered positive electrode material coated with ZrO2 for lithium ion battery |
CN103441252A (en) * | 2013-08-12 | 2013-12-11 | 天津巴莫科技股份有限公司 | Method for preparing lithium-enriched manganese-based anode material of nano-oxide-coated lithium ion battery |
CN103474637A (en) * | 2013-08-30 | 2013-12-25 | 厦门钨业股份有限公司 | Lithium ion battery anode material and preparation method thereof |
CN104617286A (en) * | 2015-01-18 | 2015-05-13 | 北京工业大学 | Simple surface modification method of Li-rich cathode material |
CN105006547A (en) * | 2014-07-30 | 2015-10-28 | 香港应用科技研究院有限公司 | Coating method for lithium ion battery and electrode active material thereof |
-
2016
- 2016-12-16 CN CN201611175207.8A patent/CN106784677A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403496A (en) * | 2011-12-16 | 2012-04-04 | 江南大学 | A kind of high-capacity lithium-ion battery composite cathode material and its synthesis method |
CN103094577A (en) * | 2013-01-18 | 2013-05-08 | 天津大学 | Modification method of lithium-rich layered positive electrode material coated with ZrO2 for lithium ion battery |
CN103441252A (en) * | 2013-08-12 | 2013-12-11 | 天津巴莫科技股份有限公司 | Method for preparing lithium-enriched manganese-based anode material of nano-oxide-coated lithium ion battery |
CN103474637A (en) * | 2013-08-30 | 2013-12-25 | 厦门钨业股份有限公司 | Lithium ion battery anode material and preparation method thereof |
CN105006547A (en) * | 2014-07-30 | 2015-10-28 | 香港应用科技研究院有限公司 | Coating method for lithium ion battery and electrode active material thereof |
CN104617286A (en) * | 2015-01-18 | 2015-05-13 | 北京工业大学 | Simple surface modification method of Li-rich cathode material |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107394133A (en) * | 2017-06-22 | 2017-11-24 | 芜湖浙鑫新能源有限公司 | Anode material for lithium-ion batteries of carbon coating and preparation method thereof |
CN107394133B (en) * | 2017-06-22 | 2021-01-26 | 芜湖浙鑫新能源有限公司 | Carbon-coated lithium ion battery positive electrode material and preparation method thereof |
CN108091852A (en) * | 2017-12-12 | 2018-05-29 | 中国科学院过程工程研究所 | A kind of molybdenum trioxide coated lithium ion battery positive electrode and preparation method thereof |
CN108091852B (en) * | 2017-12-12 | 2020-09-11 | 中国科学院过程工程研究所 | Molybdenum trioxide coated lithium ion battery positive electrode material and preparation method thereof |
CN108987708A (en) * | 2018-07-19 | 2018-12-11 | 东北大学秦皇岛分校 | A kind of sodium-ion battery positive material, preparation method and sodium-ion battery |
CN109509874A (en) * | 2018-11-16 | 2019-03-22 | 湖北锂诺新能源科技有限公司 | A kind of preparation method of molybdenum trioxide cladding lithium-rich manganese-based anode material |
CN113511692A (en) * | 2021-07-13 | 2021-10-19 | 天津大学 | Preparation method and application of lithium-rich manganese-based cathode material synthesized by short-time rapid thermal shock method |
CN114203993A (en) * | 2021-12-07 | 2022-03-18 | 北京理工大学 | Li2SeO4Fast ion conductor modified lithium ion battery anode material |
CN114203993B (en) * | 2021-12-07 | 2024-02-09 | 北京理工大学 | Li (lithium ion battery) 2 SeO 4 Fast ion conductor modified lithium ion battery anode material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111785960B (en) | Vanadium pentoxide/rGO coated nickel cobalt lithium manganate cathode material and preparation method | |
CN106602009A (en) | Lithium-rich positive electrode modified material of lithium ion battery and preparation method of lithium-rich positive electrode modified material | |
CN102005563B (en) | Preparation and surface coating method of high-voltage positive electrode material of lithium ion battery | |
CN100448772C (en) | High density ultrafine composite ferric lithium phosphate anode material and preparation method | |
CN107834050A (en) | A kind of lithium-enriched cathodic material of lithium ion battery and its improved method | |
CN104009252B (en) | Sodium-ion battery and preparation method thereof | |
CN103956477B (en) | A kind of preparation method of rich lithium ternary compound potassium ion battery plus plate material | |
CN105742622A (en) | A kind of olivine structure LiMPO4 surface modified layered lithium-rich manganese-based positive electrode material and preparation method thereof | |
CN101752562B (en) | Compound doped modified lithium ion battery anode material and preparation method thereof | |
CN105280898B (en) | Vanadium doping lithium nickel cobalt manganese oxide nano material and its preparation method and application | |
CN106784677A (en) | A kind of preparation of lithium-enriched cathodic material of lithium ion battery and improved method | |
CN102637866A (en) | Method for preparing lithium ion battery anode material with concentration gradient | |
CN104993123B (en) | A kind of lithium ion battery nickle cobalt lithium manganate positive electrode reverse micro emulsion assistant preparation method | |
CN106711414A (en) | 811-type ternary positive modified material for lithium ion batteries and preparation method thereof | |
CN108807920B (en) | LASO-coated octahedral-structure lithium nickel manganese oxide composite material and preparation method thereof | |
CN107910543A (en) | A kind of high-capacity lithium ion cell tertiary cathode modified material and preparation method thereof | |
CN107591531A (en) | A kind of lithium/sodium double ion manganese-base oxide positive electrode and preparation method and application | |
CN105958054A (en) | Method for lanthanum phosphate coated lithium ion battery cathode material nickel cobalt lithium manganate | |
CN106910887A (en) | A kind of lithium-rich manganese-based anode material, its preparation method and the lithium ion battery comprising the positive electrode | |
CN114094060B (en) | Preparation method of high-voltage positive electrode material with core-shell structure | |
CN114242972B (en) | Nickel-rich high-voltage sodium-ion battery positive electrode material and preparation method and application thereof | |
CN103078099A (en) | Anode material for lithium ion cell and preparation method thereof | |
CN107204426A (en) | A kind of cobalt nickel oxide manganses lithium/titanate composite anode material for lithium of zirconium doping vario-property | |
CN106486657A (en) | A kind of rich lithium material of surface in situ cladding and preparation method thereof | |
CN104319370B (en) | A kind of preparation method of lithium ion battery ternary cathode material LiNixCoyMnzO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |