CN106207141A - The preparation method of new energy car battery negative material - Google Patents

The preparation method of new energy car battery negative material Download PDF

Info

Publication number
CN106207141A
CN106207141A CN201610862270.2A CN201610862270A CN106207141A CN 106207141 A CN106207141 A CN 106207141A CN 201610862270 A CN201610862270 A CN 201610862270A CN 106207141 A CN106207141 A CN 106207141A
Authority
CN
China
Prior art keywords
new energy
preparation
car battery
negative material
energy car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610862270.2A
Other languages
Chinese (zh)
Inventor
钟静琴
钟静清
韦晗
陶佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liuzhou Shentong Automobile Technology Co Ltd
Original Assignee
Liuzhou Shentong Automobile Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liuzhou Shentong Automobile Technology Co Ltd filed Critical Liuzhou Shentong Automobile Technology Co Ltd
Priority to CN201610862270.2A priority Critical patent/CN106207141A/en
Publication of CN106207141A publication Critical patent/CN106207141A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to automobile batteries negative material, the specifically preparation method of new energy car battery negative material, it includes being placed in ice-water bath sulfuric acid solution and salpeter solution, adds graphite raw material and solid potassium permanganate;After temperature is increased to room temperature, adds distilled water reaction and obtain graphene oxide;Take graphene oxide to be placed in the container filling HCl solution, disperse with deionized water and stir;Then said mixture is placed in microexplosion reactor, adds KClO3Solution, H2O2Complete microexplosion reaction, obtain stannic oxide/graphene nano volume;By stannic oxide/graphene nano volume and SnCl4Soluble in water, it is subsequently adding reducing agent reaction and obtains SnO2/ graphene nano volume composite negative pole material.The present invention is dioxide composite tin material on graphene nano is rolled up, the material property prepared has more excellent hydrogen storage property compared to Graphene and tin dioxide composite material, as the negative pole of new energy car battery, it is greatly improved the serviceability of battery, extends the service life of battery.

Description

The preparation method of new energy car battery negative material
Technical field
The present invention relates to automobile batteries negative material, specifically the preparation side of new energy car battery negative material Method.
Background technology
The Graphene of curling causes the attention of some researcheres as a kind of novel nanostructured, and entitled Graphene is received Rice is rolled up, and its discovery can trace back to nineteen sixty, and graphene nano volume has quasi-one-dimentional structure, is by plane Graphene helix-coil Becoming, the size of its radius depends on the size of graphite and the curvature of curling.Additionally, the two ends of non-closed state and outer edge can To improve the hydrogen storage ability of graphene nano volume, it is used as the electrode material of ultracapacitor or battery, especially as The cell negative electrode material of new-energy automobile, the R&D direction of Cheng Xin;Between graphene nano volume layer under key effect, adjustable interlayer Away from electron transfer and the optical characteristics that can affect graphene nano volume.Therefore, graphene nano rolls up oneself becomes graphene-based nanometer One of study hotspot of material.
At present, preparation and the application of graphene nano volume far lag behind Graphene and CNT, and its research is the most only concentrated At structure and the Theoretical Calculation of performance and computer simulation.Chemical method is used to synthesize the intercalation chemical combination of graphite and metal K Thing, then to its supersound process, prepare first graphene nano volume, and propose graphene nano volume have than Graphene more Significantly hydrogen storage ability and have the hypothesis of super large capacitor of six times of Graphenes.The method must complicated at anhydrous and oxygen-free etc. and Carry out under harsh conditions, therefore, in extensive preparation with application aspect by a definite limitation.Additionally, it is multiple about SnO2/ Graphene The preparation report of condensation material is a lot, but concrete SnO2/ graphene nano volume composite really has no record.
Summary of the invention
In order to overcome the deficiencies in the prior art, the invention provides one and can prepare SnO2/ graphene nano volume Compound Negative The preparation method of pole material, the method is simple, and prepared material has hydrogen storage property and the capacitive property of excellence.
The present invention solves the technical scheme that above-mentioned technical problem used: the preparation of new energy car battery negative material Method, it comprises the following steps:
(1) sulfuric acid solution and salpeter solution are placed in ice-water bath stirring, are subsequently adding graphite raw material and solid potassium permanganate, and Continue stirring;
(2) after temperature is increased to room temperature, withdraw ice-water bath, and add distilled water reaction, then sucking filtration, obtain graphite oxide Alkene;
(3) take above-mentioned graphene oxide, be placed in filling in the container of HCl solution, disperse with deionized water and stir;
(4) then said mixture is placed in microexplosion reactor, adds KClO3Solution, adds H2O2Complete microexplosion reaction, Obtain the stannic oxide/graphene nano volume with crimped configuration;
(5) by above-mentioned stannic oxide/graphene nano volume and SnCl4By certain mass than mix homogeneously soluble in water;
(6) it is subsequently adding reducing agent reaction, and filters, wash, be dried, obtain SnO2/ graphene nano volume negative material.
As preferably, the mass concentration of described sulfuric acid solution is 96%, and consumption is 80-100 mL;The mass concentration of nitric acid is 96%, consumption is 20-40 mL;The quality of graphite raw material is 2-3g, and the quality of solid potassium permanganate is 13-14g.
As preferably, described graphene oxide consumption is 0.5-1g, and the concentration of HCl solution is 1mol/L, and consumption is 60- 100mL。
As preferably, disperse with deionized water and use agitator to stir 4-13h.
As preferably, KClO3Solution uses the mode being added dropwise over, and concentration is 1mol/L, and consumption is 10-20mL.
As preferably, KClO3After solution is added dropwise to complete, add the H of 50-100mL30%2O2
As preferably, stannic oxide/graphene nano is rolled up and SnCl4Mass ratio be (2-10).
As preferably, reducing agent uses hydrazine hydrate or sodium borohydride, response time 10-24h.
As can be known from the above technical solutions, the present invention is dioxide composite tin material on graphene nano is rolled up, and prepares Material property has more excellent hydrogen storage property compared to Graphene and tin dioxide composite material, as new-energy automobile electricity The negative pole in pond, is greatly improved the serviceability of battery, extends the service life of battery.
Detailed description of the invention
The present invention is described more detail below, and illustrative examples and explanation in this present invention are used for explaining the present invention, But it is not as a limitation of the invention.
The preparation method of new energy car battery negative material, it comprises the following steps:
Sulfuric acid solution and the salpeter solution that 20-40 mL mass concentration is 96% that 80-100 mL mass concentration is 96% are placed in ice Stirred in water bath, is subsequently adding 2-3g graphite raw material and 13-14g solid potassium permanganate, and continues stirring;Treat that temperature is increased to room Wen Hou, withdraws ice-water bath, and adds distilled water reaction, then sucking filtration, obtain graphene oxide;Take 0.5-1g graphene oxide to put In filling in the container of HCl solution of 60-100mL 1mol/L, disperse with deionized water and use agitator to stir 4-13h; Then said mixture is placed in microexplosion reactor, is added dropwise over the KClO of 10-20mL 1mol/L3Solution, KClO3Solution The H2O2 adding 50-100mL30% after being added dropwise to complete completes microexplosion reaction, and the graphene oxide obtaining having crimped configuration is received Rice volume;Then by above-mentioned stannic oxide/graphene nano volume and SnCl4(2-10) mix homogeneously soluble in water, is subsequently adding in mass ratio Reducing agent hydrazine hydrate or sodium borohydride, after reaction 10-24h, filter and use deionized water cyclic washing, being dried the most available SnO2/ graphene nano volume composite negative pole material.
Embodiment 1
Sulfuric acid solution that 80mL mass concentration is 96% and salpeter solution that 20 mL mass concentrations are 96% are placed in ice-water bath and stir Mix, be subsequently adding 2g graphite raw material and 13g solid potassium permanganate, and continue stirring;After temperature is increased to room temperature, withdraw frozen water Bath, and add distilled water reaction, then sucking filtration, obtain graphene oxide;Take graphene oxide and the 60 mL 1mol/ of 0.5g In LHCl flask, with deionized water dispersion and stir 4h with agitator, then the mixture obtained be placed in microexplosion reactor, It is added dropwise over 10mL 1mol/L KClO3In microexplosion reactor, after being added dropwise to complete, add the H of 50mL30%2O2Complete microexplosion Reaction, finally gives the stannic oxide/graphene nano volume with crimped configuration;By prepared stannic oxide/graphene nano volume and SnCl4Press Mass ratio 1:5 mix homogeneously soluble in water, the rear reducing agent hydrazine hydrate that adds, after reaction 10h, filters and repeatedly washes with deionized water Wash, be dried to obtain SnO2/ graphene nano volume composite.
Using above-mentioned material as the negative pole of automobile batteries, test obtains: electrode is at 600mA g-1Charging and discharging currents close Cycle performance under degree, 0.05-3.0 V voltage shows bigger performance improvement, and discharge capacity reaches 2770 mAh g first-1, Charging capacity is 1540 mAh g-1, initial coulomb efficiency about 56%, discharge capacity about 820mAh g after 100 circulations-1
Embodiment 2
Sulfuric acid solution and the salpeter solution that 30 mL mass concentrations are 96% that 90 mL mass concentrations are 96% are placed in ice-water bath Stirring, is subsequently adding 2.5g graphite raw material and 13.5g solid potassium permanganate, and continues stirring;After temperature is increased to room temperature, remove Walk ice-water bath, and add distilled water reaction, then sucking filtration, obtain graphene oxide;Take graphene oxide and 80 mL of 1g In 1mol/LHCl flask, with deionized water dispersion and stir 8h with agitator, then the mixture obtained is placed in microexplosion reaction In device, it is added dropwise over 20mL 1mol/L KClO3In microexplosion reactor, after being added dropwise to complete, add the H of 70mL30%2O2Complete Microexplosion is reacted, and finally gives the stannic oxide/graphene nano volume with crimped configuration;By prepared stannic oxide/graphene nano volume and SnCl4By 1:2 than mix homogeneously soluble in water, the rear borane reducing agent sodium hydride that adds, after reaction 15h, filters and uses deionized water Cyclic washing, is dried to obtain SnO2/ graphene nano volume composite.
Relative to the SnO not being wrapped by2The electrode of material, using above-mentioned material as the negative pole of automobile batteries, tests Arrive: electrode is at 600mA g-1Charging and discharging currents density, cycle performance under 0.05-3.0 V voltage show bigger performance Improving, discharge capacity reaches 2580 mAh g first-1, charging capacity is 1720 mAh g-1, initial coulomb efficiency about 67%, After 100 circulations, discharge capacity is from 170mAh g-1Improve to 920mAh g-1
Embodiment 3
Sulfuric acid solution and the salpeter solution that 40 mL mass concentrations are 96% that 100 mL mass concentrations are 96% are placed in ice-water bath Stirring, is subsequently adding 3g graphite raw material and 14g solid potassium permanganate, and continues stirring;After temperature is increased to room temperature, withdraw ice Water-bath, and add distilled water reaction, then sucking filtration, obtain graphene oxide;Take graphene oxide and the 100 mL 1mol/ of 1g In LHCl flask, with deionized water dispersion and stir 13h with agitator, then the mixture obtained is placed in microexplosion reactor In, it is added dropwise over 10mL 1mol/L KClO3In microexplosion reactor, after being added dropwise to complete, add the H of 50-100mL30%2O2Complete Become microexplosion reaction, finally give the stannic oxide/graphene nano volume with crimped configuration;By prepared stannic oxide/graphene nano volume and SnCl4The mix homogeneously soluble in water of 1:10 in mass ratio, the rear reducing agent hydrazine hydrate that adds, after reaction 24h, filters and uses deionization Water cyclic washing, is dried to obtain SnO2/ graphene nano volume composite.
Using above-mentioned material as the negative pole of automobile batteries, test obtains: electrode is at 600mA g-1Charging and discharging currents close Cycle performance under degree, 0.05-3.0 V voltage shows bigger performance improvement, and discharge capacity reaches 2470 mAh g first-1, Charging capacity is 1460 mAh g-1, initial coulomb efficiency about 60%, after 100 circulations, discharge capacity is 890mAh g-1
The technical scheme provided the embodiment of the present invention above is described in detail, specific case used herein Principle and embodiment to the embodiment of the present invention are set forth, and the explanation of above example is only applicable to help to understand this The principle of inventive embodiments;Simultaneously for one of ordinary skill in the art, according to the embodiment of the present invention, in specific embodiment party All will change in formula and range of application, in sum, this specification content should not be construed as limitation of the present invention.

Claims (8)

1. the preparation method of new energy car battery negative material, it comprises the following steps:
(1) sulfuric acid solution and salpeter solution are placed in ice-water bath stirring, are subsequently adding graphite raw material and solid potassium permanganate, and Continue stirring;
(2) after temperature is increased to room temperature, withdraw ice-water bath, and add distilled water reaction, then sucking filtration, obtain graphite oxide Alkene;
(3) take above-mentioned graphene oxide, be placed in filling in the container of HCl solution, disperse with deionized water and stir;
(4) then said mixture is placed in microexplosion reactor, adds KClO3Solution, adds H2O2Complete microexplosion reaction, Obtain the stannic oxide/graphene nano volume with crimped configuration;
(5) by above-mentioned stannic oxide/graphene nano volume and SnCl4By certain mass than mix homogeneously soluble in water;
(6) it is subsequently adding reducing agent reaction, and filters, wash, be dried, obtain SnO2/ graphene nano volume negative material.
The preparation method of new energy car battery negative material the most according to claim 1, it is characterised in that: described sulphuric acid is molten The mass concentration of liquid is 96%, and consumption is 80-100 mL;The mass concentration of nitric acid is 96%, and consumption is 20-40 mL;Graphite raw material Quality be 2-3g, the quality of solid potassium permanganate is 13-14g.
The preparation method of new energy car battery negative material the most according to claim 1, it is characterised in that: described oxidation stone Ink alkene consumption is 0.5-1g, and the concentration of HCl solution is 1mol/L, and consumption is 60-100mL.
The preparation method of new energy car battery negative material the most according to claim 3, it is characterised in that: use deionized water Disperse and use agitator to stir 4-13h.
The preparation method of new energy car battery negative material the most according to claim 4, it is characterised in that: KClO3Solution is adopted By the mode being added dropwise over, concentration is 1mol/L, and consumption is 10-20mL.
The preparation method of new energy car battery negative material the most according to claim 5, it is characterised in that: KClO3Solution drips After having added, add the H of 50-100mL30%2O2
The preparation method of new energy car battery negative material the most according to claim 6, it is characterised in that: graphene oxide Nanometer roll and SnCl4Mass ratio be 1:(2-10).
The preparation method of new energy car battery negative material the most according to claim 1, it is characterised in that: reducing agent uses Hydrazine hydrate or sodium borohydride, response time 10-24h.
CN201610862270.2A 2016-09-29 2016-09-29 The preparation method of new energy car battery negative material Pending CN106207141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610862270.2A CN106207141A (en) 2016-09-29 2016-09-29 The preparation method of new energy car battery negative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610862270.2A CN106207141A (en) 2016-09-29 2016-09-29 The preparation method of new energy car battery negative material

Publications (1)

Publication Number Publication Date
CN106207141A true CN106207141A (en) 2016-12-07

Family

ID=57520724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610862270.2A Pending CN106207141A (en) 2016-09-29 2016-09-29 The preparation method of new energy car battery negative material

Country Status (1)

Country Link
CN (1) CN106207141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381561A (en) * 2017-08-16 2017-11-24 柳州申通汽车科技有限公司 The processing method of automobile-used grapheme material
CN107522193A (en) * 2017-08-16 2017-12-29 柳州申通汽车科技有限公司 A kind of graphene material processing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591014A (en) * 2009-06-30 2009-12-02 湖北大学 A kind of method of realizing large-scale preparation of monolayer oxidized graphene
CN103413925A (en) * 2013-08-14 2013-11-27 武汉理工大学 Graphene curled molybdenum trioxide nano-ribbons, and preparation method and application thereof
CN103730643A (en) * 2012-10-16 2014-04-16 海洋王照明科技股份有限公司 Silicon and graphene composite electrode material, preparing method thereof and lithium ion battery
CN104759253A (en) * 2015-04-14 2015-07-08 中国广州分析测试中心 Graphene sponge used for enriching heavy metals or removing pollutants in water and preparation method of graphene sponge
CN104966826A (en) * 2015-07-09 2015-10-07 天津工业大学 Preparation method for graphene-coated inorganic nanoparticle cathode material of ion battery
CN105742635A (en) * 2016-01-01 2016-07-06 三峡大学 Stannic oxide/graphene/carbon composite material and preparation method thereof
CN105742579A (en) * 2014-12-08 2016-07-06 中国科学院兰州化学物理研究所 Preparation method for graphene coil-hollow stannic oxide composite used for lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591014A (en) * 2009-06-30 2009-12-02 湖北大学 A kind of method of realizing large-scale preparation of monolayer oxidized graphene
CN103730643A (en) * 2012-10-16 2014-04-16 海洋王照明科技股份有限公司 Silicon and graphene composite electrode material, preparing method thereof and lithium ion battery
CN103413925A (en) * 2013-08-14 2013-11-27 武汉理工大学 Graphene curled molybdenum trioxide nano-ribbons, and preparation method and application thereof
CN105742579A (en) * 2014-12-08 2016-07-06 中国科学院兰州化学物理研究所 Preparation method for graphene coil-hollow stannic oxide composite used for lithium ion battery
CN104759253A (en) * 2015-04-14 2015-07-08 中国广州分析测试中心 Graphene sponge used for enriching heavy metals or removing pollutants in water and preparation method of graphene sponge
CN104966826A (en) * 2015-07-09 2015-10-07 天津工业大学 Preparation method for graphene-coated inorganic nanoparticle cathode material of ion battery
CN105742635A (en) * 2016-01-01 2016-07-06 三峡大学 Stannic oxide/graphene/carbon composite material and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F ZENG等: ""Facile Preparation of High‐Quality Graphene Scrolls from Graphite Oxide by a Microexplosion Method"", 《ADVANCED MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381561A (en) * 2017-08-16 2017-11-24 柳州申通汽车科技有限公司 The processing method of automobile-used grapheme material
CN107522193A (en) * 2017-08-16 2017-12-29 柳州申通汽车科技有限公司 A kind of graphene material processing

Similar Documents

Publication Publication Date Title
Gao et al. Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination
He et al. Boosting the performance of LiTi2 (PO4) 3/C anode for aqueous lithium ion battery by Sn doping on Ti sites
Yao et al. Enhanced lithium storage performance of nanostructured NaTi2 (PO4) 3 decorated by nitrogen-doped carbon
Han et al. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery
CN102941042B (en) A kind of Graphene/metal oxide hybrid aeroge, preparation method and application thereof
CN102044666B (en) Method for preparing lithium iron phosphate composite material for lithium cells
CN104817085B (en) A kind of preparation method and its usage of two-dimensional nano silicon chip
CN102992308A (en) Graphene with high specific capacitance and preparation method thereof
Yang et al. Caged biomass carbon with anchoring MoO2/NC Nanospheres: Synergistic enhancement of potassium ion storage and electrochemical performance
Yue et al. High performance hollow carbon@ SnO2@ graphene composite based on internal-external double protection strategy for lithium ion battery
CN105655143B (en) A kind of preparation method of ultracapacitor metal/amorphous nickel cobalt hydroxide combination electrode
CN104505496A (en) Preparation method of porous amorphous carbon nanotube-metal oxide nanometer sheet composite material
Chen et al. Vertically oriented carbon nanotube as a stable frame to support the Co0. 85Se nanoparticles for high performance supercapacitor electrode
Lu et al. Enabling improved cycling stability of hollow SnO2/C composite anode for lithium-ion battery by constructing a built-in porous carbon support
WO2021004259A1 (en) Symmetrical aqueous sodium-ion battery
Tian et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity
Gui et al. TiO2 nanotube/RGO modified separator as an effective polysulfide-barrier for high electrochemical performance Li-S batteries
Yang et al. Multifunctional microporous activated carbon nanotubes anchored on graphite fibers for high-strength and high-rate flexible all-solid-state supercapacitors
Wang et al. NiCo layered double hydroxide on three-dimensional modified graphite paper for high-performance supercapacitors
CN104671232A (en) Preparation method of graphene and application of prepared graphene
Mu et al. High-performance flexible all-solid-state micro-supercapacitors based on two-dimensional InSe nanosheets
Zhang et al. 2, 6-Diaminopyridine decorated reduced graphene oxide as integrated electrode with excellent electrochemical properties for aqueous supercapacitors
Liu et al. Preparation of high-performance graphene materials by adjusting internal micro-channels using a combined electrospray/electrospinning technique
Zhou et al. N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries
CN106207141A (en) The preparation method of new energy car battery negative material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication