CN105731552B - Talc-titanic acid nickel nanocomposite and preparing method thereof - Google Patents
Talc-titanic acid nickel nanocomposite and preparing method thereof Download PDFInfo
- Publication number
- CN105731552B CN105731552B CN201610068114.9A CN201610068114A CN105731552B CN 105731552 B CN105731552 B CN 105731552B CN 201610068114 A CN201610068114 A CN 201610068114A CN 105731552 B CN105731552 B CN 105731552B
- Authority
- CN
- China
- Prior art keywords
- talc
- titanate
- nickel
- add
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title 2
- 229910052759 nickel Inorganic materials 0.000 title 1
- 239000000454 talc Substances 0.000 claims abstract description 45
- 229910052623 talc Inorganic materials 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 238000002360 preparation method Methods 0.000 claims abstract description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000002815 nickel Chemical class 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims description 31
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000002002 slurry Substances 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 6
- 229940078494 nickel acetate Drugs 0.000 claims description 6
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical group [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 5
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 5
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 5
- -1 unsaturated fatty acid titanate Chemical class 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 3
- 239000011324 bead Substances 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- 235000021355 Stearic acid Nutrition 0.000 claims 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims 1
- 239000008117 stearic acid Substances 0.000 claims 1
- DGXKDBWJDQHNCI-UHFFFAOYSA-N dioxido(oxo)titanium nickel(2+) Chemical compound [Ni++].[O-][Ti]([O-])=O DGXKDBWJDQHNCI-UHFFFAOYSA-N 0.000 abstract description 10
- 239000010410 layer Substances 0.000 abstract description 10
- 239000002105 nanoparticle Substances 0.000 abstract description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 7
- 239000011707 mineral Substances 0.000 abstract description 7
- 239000011229 interlayer Substances 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract description 2
- 230000002209 hydrophobic effect Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000004913 activation Effects 0.000 abstract 1
- 238000005054 agglomeration Methods 0.000 abstract 1
- 230000002776 aggregation Effects 0.000 abstract 1
- 239000003638 chemical reducing agent Substances 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 150000007522 mineralic acids Chemical class 0.000 abstract 1
- 238000000197 pyrolysis Methods 0.000 abstract 1
- 239000011358 absorbing material Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 239000002250 absorbent Substances 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- WQHONKDTTOGZPR-UHFFFAOYSA-N [O-2].[O-2].[Mn+2].[Fe+2] Chemical class [O-2].[O-2].[Mn+2].[Fe+2] WQHONKDTTOGZPR-UHFFFAOYSA-N 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NQNBVCBUOCNRFZ-UHFFFAOYSA-N nickel ferrite Chemical compound [Ni]=O.O=[Fe]O[Fe]=O NQNBVCBUOCNRFZ-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种滑石‑钛酸镍纳米复合材料及其制备方法,钛酸镍纳米微粒位于滑石层间。其制备方法步骤如下:1)使用无机酸与还原剂对层状矿物进行活化和除杂;2)酸活化后脱水、烘干;3)将憎水性的钛酸酯及镍盐与滑石混合,通过高剪切研磨将复合物***滑石层间;4)最后高温分解后即在滑石层间原位合成钛酸镍纳米微粒,得到滑石‑钛酸镍纳米复合材料。滑石对钛酸镍微粒的层间约束力有效地抑制了纳米微粒的团聚并使其具有许多独特的物理化学性质。制得的产品因而在电磁波吸收领域具有潜在的用途。The invention discloses a talc-nickel titanate nanocomposite material and a preparation method thereof. Nickel titanate nanoparticles are located between talc layers. The preparation method steps are as follows: 1) Use inorganic acid and reducing agent to activate and remove impurities in layered minerals; 2) Dehydrate and dry after acid activation; 3) Mix hydrophobic titanate and nickel salt with talc, Insert the compound between the talc layers through high-shear grinding; 4) After the final pyrolysis, nickel titanate nanoparticles are synthesized in situ between the talc layers to obtain talc-nickel titanate nanocomposites. The interlayer binding force of talc on nickel titanate particles effectively inhibits the agglomeration of nanoparticles and makes them have many unique physical and chemical properties. The prepared product thus has potential applications in the field of electromagnetic wave absorption.
Description
技术领域technical field
本发明涉及复合材料及其制备方法,尤其涉及一种滑石-钛酸镍纳米复合材料及其制备方法。The invention relates to a composite material and a preparation method thereof, in particular to a talc-nickel titanate nanocomposite material and a preparation method thereof.
背景技术Background technique
吸波材料是将具有吸收性能的吸收剂分散于粘结树脂和橡胶当中。当前,许多国家都在研究各种高性能的吸波材料,而除去对粘结树脂的研究和材料的匹配与设计之外,要制造高性能的吸波材料,核心就是要制造损耗吸收能力强并且能获得较大界面阻抗的雷达波吸收剂,因此,对吸收剂的研究一直是吸波材料研究的重点。在众多吸收剂中,目前最受重视的主要有:铁氧体系列吸收剂,金属微粉吸收剂,尖晶金属纤维系列吸收剂;手性吸波材料;耐高温的陶瓷吸波材料;导电高聚物等。钛酸镍与铁系吸收剂具有类似的结构,也具有吸波性能,但其研究较少,因此,将铁酸镍应用于吸波材料将大大提高其应用范围。The absorbing material is to disperse the absorbing agent with absorbing properties in the bonding resin and rubber. At present, many countries are researching various high-performance absorbing materials. In addition to the research on bonding resins and the matching and design of materials, the core of manufacturing high-performance absorbing materials is to manufacture loss-absorbing materials. And radar wave absorbers with large interface impedance can be obtained. Therefore, the research on absorbers has always been the focus of research on absorbing materials. Among the many absorbents, the most important ones are: ferrite series absorbents, metal micropowder absorbents, spinel metal fiber series absorbents; chiral wave-absorbing materials; high-temperature-resistant ceramic wave-absorbing materials; polymer etc. Nickel titanate has a similar structure to iron-based absorbers and also has microwave-absorbing properties, but there are few studies on it. Therefore, applying nickel ferrite to microwave-absorbing materials will greatly increase its application range.
滑石是一种常见的层状硅酸盐矿物,目前主要应用于耐火材料、造纸、橡胶的填料、绝缘材料、皮革涂料、化妆材料等领域。然而,与一般层状硅酸盐矿物不同的是,滑石一般认为是一种不可插层的矿物,这大大地限制了滑石在功能矿物领域的发展。Talc is a common layered silicate mineral, currently mainly used in refractory materials, papermaking, rubber fillers, insulating materials, leather coatings, cosmetic materials and other fields. However, unlike the general layered silicate minerals, talc is generally considered as a non-intercalation mineral, which greatly limits the development of talc in the field of functional minerals.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足,提供一种滑石-钛酸镍纳米复合材料及其制备方法。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a talc-nickel titanate nanocomposite material and a preparation method thereof.
本发明创新性地利用滑石层间的疏水性,采用钛酸酯和镍盐,从而制备了具有独特结构的滑石-钛酸镍纳米复合材料。钛酸镍纳米微粒位于滑石层间,与粘土矿物紧密结合。由于滑石层间的约束力和限域作用,这种新型的结构具有粒径均一、结构稳定、过程可控等优点。该纳米复合材料在电磁波吸收、磁性共振成像等领域具有潜在的用途。The invention innovatively utilizes the hydrophobicity between talc layers, and adopts titanate and nickel salt to prepare a talc-nickel titanate nanocomposite material with a unique structure. Nickel titanate nanoparticles are located between talc layers and are closely combined with clay minerals. Due to the binding force and confinement effect between talc layers, this new structure has the advantages of uniform particle size, stable structure and controllable process. The nanocomposite material has potential applications in the fields of electromagnetic wave absorption, magnetic resonance imaging and the like.
一种滑石-钛酸镍纳米复合材料,在层状矿物滑石的结晶结构层之间插有纳米粒级的钛酸镍所形成的一种复合材料,所述的纳米粒级的钛酸镍由钛酸酯和镍盐插层进入滑石层间,并原位合成获得。A talc-nickel titanate nanocomposite material, which is a composite material formed by inserting nano-sized nickel titanate between the crystal structure layers of the layered mineral talc, and the nano-sized nickel titanate is composed of Titanate and nickel salt are intercalated into the interlayer of talc and synthesized in situ.
一种滑石-钛酸镍纳米复合材料的制备方法,步骤如下:A preparation method of talc-nickel titanate nanocomposite material, the steps are as follows:
1) 经分离提纯的滑石,加5至10倍重量,质量浓度3%至10%的盐酸,再加入相当于滑石重量0.5%至2%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应6~24小时,期间不断搅拌;1) After separating and purifying the talc, add 5 to 10 times the weight of hydrochloric acid with a mass concentration of 3% to 10%, and then add sodium dithionite equivalent to 0.5% to 2% of the weight of the talc, and stir evenly to make a suspension slurry. React at room temperature for 6 to 24 hours, stirring continuously during the period;
2) 所得产物过滤或离心脱水清洗后,60至150℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60 to 150°C;
3) 在步骤2)的产物中加入0.05~0.5摩尔的钛酸酯与0.05~0.5摩尔的镍盐以摩尔比为1:1加入到0.1~2升有机溶剂中,混合搅拌均匀;3) Add 0.05-0.5 moles of titanate and 0.05-0.5 moles of nickel salt to the product of step 2) and add them into 0.1-2 liters of organic solvent at a molar ratio of 1:1, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,450~900℃煅烧0.5~3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, and calcinate it at 450-900 °C for 0.5-3 hours , and take it out after cooling to obtain the talc-nickel titanate nanocomposite material.
所述的钛酸酯为钛酸四丁酯、钛酸异丙酯、单烷氧基不饱和脂肪酸钛酸酯、异丙基三硬脂酸酰氧基钛酸酯中的一种或几种。The titanate is one or more of tetrabutyl titanate, isopropyl titanate, monoalkoxy unsaturated fatty acid titanate, and isopropyl tristearic acid acyloxy titanate .
所述的镍盐为硝酸镍、乙酸镍、氯化镍、硫酸镍的一种或几种。The nickel salt is one or more of nickel nitrate, nickel acetate, nickel chloride and nickel sulfate.
所述的有机溶剂为乙醇、四氢呋喃、氯仿、二甲基甲酰胺、丙酮或正己烷中的一种或几种。The organic solvent is one or more of ethanol, tetrahydrofuran, chloroform, dimethylformamide, acetone or n-hexane.
所述的高剪切研磨机为球磨机、辊磨机、棒磨机、珠磨机中的一种。The high shear mill is one of ball mill, roller mill, rod mill and bead mill.
本发明的有益效果:本发明提出的滑石-钛酸镍纳米复合材料及其制备方法充分利用了天然的滑石矿物为原材料,得到的复合材料中,钛酸镍纳米微粒位于层间,解决了滑石层间难以插层的难题;由于滑石层间对钛酸镍微粒的限域作用,得到的复合材料具有许多独特的物理化学性质,在电磁波吸收、磁性共振等领域具有潜在的用途。本发明提出的滑石-钛酸镍纳米复合材料及其制备方法,工艺流程简单,材料结构新颖,潜在用途广泛,具有很强的应用价值。天然的滑石产量大,成本低,本发明为滑石的研究和大规模应用开辟了道路。Beneficial effects of the present invention: the talc-nickel titanate nanocomposite material and its preparation method proposed by the present invention make full use of natural talc minerals as raw materials, and in the obtained composite material, nickel titanate nanoparticles are located between layers, which solves the It is difficult to intercalate between layers; due to the confinement of nickel titanate particles between talc layers, the obtained composite material has many unique physical and chemical properties, and has potential applications in the fields of electromagnetic wave absorption and magnetic resonance. The talc-nickel titanate nanocomposite material and the preparation method thereof proposed by the invention have simple technological process, novel material structure, wide potential application and strong application value. The natural talc has large output and low cost, and the invention opens up a way for the research and large-scale application of the talc.
具体实施方式detailed description
本发明提出了一种滑石-钛酸镍纳米复合材料及其制备方法,具体实施方式包括以下步骤:制备的第一步是将滑石除杂提纯。天然存在的滑石含有石英、铁锰氧化物、氢氧化物等杂质,通过盐酸和连二亚硫酸钠处理将滑石中存在的这些杂质去除。随后将矿物过滤或离心脱水,去离子水彻底清洗烘干后即得到纯度较高的滑石矿物。The invention proposes a talc-nickel titanate nanocomposite material and a preparation method thereof. The specific implementation method includes the following steps: the first step of preparation is to remove impurities and purify the talc. Naturally occurring talc contains impurities such as quartz, iron-manganese oxides, and hydroxides. These impurities present in talc are removed by treatment with hydrochloric acid and sodium dithionite. Then the minerals are filtered or centrifugally dehydrated, thoroughly washed and dried with deionized water to obtain talc minerals with high purity.
制备的第二步是将钛酸酯和镍盐插层进入滑石层间,并将其原位合成为钛酸镍纳米微粒。将滑石加入到混合物中,由于滑石层间为疏水性,钛酸酯和镍盐前驱体将优先进入滑石层间。混合搅拌均匀后样品在高剪切研磨机中研磨0.5至5小时,使得插层反应尽可能完全。随后将产物烘干后置于炉中,450~900 ℃煅烧0.5~3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。The second step of preparation is to intercalate titanate and nickel salt into the interlayer of talc, and synthesize it into nickel titanate nanoparticles in situ. When talc is added to the mixture, since the interlayer of talc is hydrophobic, titanate and nickel salt precursors will preferentially enter the interlayer of talc. After mixing and stirring evenly, the samples were ground in a high-shear mill for 0.5 to 5 hours to make the intercalation reaction as complete as possible. The product is then dried and placed in a furnace, calcined at 450-900° C. for 0.5-3 hours, and taken out after cooling to obtain a talc-nickel titanate nanocomposite material.
下面结合实施例进一步说明本发明。Below in conjunction with embodiment further illustrate the present invention.
实施例1Example 1
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.5摩尔的钛酸四丁酯与0.5摩尔的乙酸镍后加入到0.1升乙醇中,混合搅拌均匀;3) Add 0.5 moles of tetrabutyl titanate and 0.5 moles of nickel acetate to the product of step 2), then add them into 0.1 liter of ethanol, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例2Example 2
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.3摩尔的钛酸四丁酯与0.3摩尔的乙酸镍后加入到0.1升丙酮中,混合搅拌均匀;3) Add 0.3 moles of tetrabutyl titanate and 0.3 moles of nickel acetate to the product of step 2), then add them into 0.1 liter of acetone, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例3Example 3
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.3摩尔的钛酸异丙酯与0.3摩尔的硝酸镍后加入到0.2升正己烷中,混合搅拌均匀;3) Add 0.3 moles of isopropyl titanate and 0.3 moles of nickel nitrate to the product of step 2), then add them to 0.2 liters of n-hexane, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例4Example 4
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.5摩尔的钛酸异丙酯与0.5摩尔的硝酸镍后加入到0.2升乙醇中,混合搅拌均匀;3) Add 0.5 moles of isopropyl titanate and 0.5 moles of nickel nitrate to the product of step 2), then add them to 0.2 liters of ethanol, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例5Example 5
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.5摩尔的烷氧基不饱和脂肪酸钛酸酯与0.5摩尔的硝酸镍后加入到0.1升正己烷中,混合搅拌均匀;3) Add 0.5 mole of alkoxy unsaturated fatty acid titanate and 0.5 mole of nickel nitrate to the product of step 2), then add it to 0.1 liter of n-hexane, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例6Example 6
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.1摩尔的钛酸异丙酯与0.1摩尔的乙酸镍后加入到0.5升丙酮中,混合搅拌均匀;3) Add 0.1 mole of isopropyl titanate and 0.1 mole of nickel acetate to the product of step 2), then add it to 0.5 liter of acetone, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例7Example 7
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.4摩尔的异丙基三硬脂酸酰氧基钛酸酯与0.4摩尔的氯化镍加入到0.5升乙醇中,混合搅拌均匀;3) Add 0.4 mole of isopropyl tristearate acyloxy titanate and 0.4 mole of nickel chloride to the product of step 2) into 0.5 liter of ethanol, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
实施例8Example 8
1) 经分离提纯的滑石,加5重量10%(质量浓度)的盐酸,再加入相当于滑石重量0.5%的连二亚硫酸钠,搅拌均匀制成悬浮液矿浆,在室温下反应24小时,期间不断搅拌;1) After separation and purification of talc, add 5% by weight of 10% (mass concentration) hydrochloric acid, and then add sodium dithionite equivalent to 0.5% by weight of talc, stir evenly to make a suspension slurry, react at room temperature for 24 hours, and continuously stir;
2) 所得产物过滤或离心脱水清洗后,60℃烘干;2) After the obtained product is filtered or centrifugally dehydrated and washed, it is dried at 60°C;
3) 在步骤2)的产物中加入0.05摩尔的钛酸四丁酯与0.05摩尔的乙酸镍后加入到0.1升四氢呋喃中,混合搅拌均匀;3) Add 0.05 moles of tetrabutyl titanate and 0.05 moles of nickel acetate to the product of step 2), then add them into 0.1 liter of tetrahydrofuran, mix and stir evenly;
4) 将100克步骤3)的产物混合搅拌均匀后在高剪切研磨机中研磨0.5至5小时;所得产物60~150 ℃烘干后置于炉中,500℃煅烧3小时,冷却后取出,即得滑石-钛酸镍纳米复合材料。4) Mix 100 grams of the product of step 3) and grind it in a high-shear grinder for 0.5 to 5 hours; dry the product at 60-150 °C and place it in a furnace, calcinate at 500 °C for 3 hours, and take it out after cooling , that is, the talc-nickel titanate nanocomposite material.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610068114.9A CN105731552B (en) | 2016-02-01 | 2016-02-01 | Talc-titanic acid nickel nanocomposite and preparing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610068114.9A CN105731552B (en) | 2016-02-01 | 2016-02-01 | Talc-titanic acid nickel nanocomposite and preparing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105731552A CN105731552A (en) | 2016-07-06 |
CN105731552B true CN105731552B (en) | 2017-05-24 |
Family
ID=56247226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610068114.9A Expired - Fee Related CN105731552B (en) | 2016-02-01 | 2016-02-01 | Talc-titanic acid nickel nanocomposite and preparing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105731552B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2757656C1 (en) * | 2021-02-19 | 2021-10-19 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method for obtaining a coating from single-phase nickel titanate on a corundum substrate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101880870B (en) * | 2010-07-15 | 2012-05-23 | 陕西科技大学 | A kind of preparation method of NiTiO3 film |
CN101880067B (en) * | 2010-07-15 | 2011-12-28 | 陕西科技大学 | A kind of preparation method of rod-shaped NiTiO3 nanocrystal |
CN105032464B (en) * | 2015-07-16 | 2017-07-07 | 湖南大学 | Carbonitride metatitanic acid nickel composite material and preparation method and application |
-
2016
- 2016-02-01 CN CN201610068114.9A patent/CN105731552B/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2757656C1 (en) * | 2021-02-19 | 2021-10-19 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method for obtaining a coating from single-phase nickel titanate on a corundum substrate |
Also Published As
Publication number | Publication date |
---|---|
CN105731552A (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3487829B1 (en) | Process for the production of geopolymer or geopolymer composite | |
WO2021204210A9 (en) | Micro-nano material series products with cement and "three wastes" as raw materials, and synthesis process therefor | |
CN100560657C (en) | TiO 2Complex ore powder and preparation method | |
CN104785349B (en) | Efficient preparation method for nano-scale solid powder | |
CN105664843B (en) | Method for preparing micro-nano hybrid mesoporous adsorption microspheres by using red attapulgite clay | |
CN103359753B (en) | Preparation method of kaolin-silane embedded intercalating modified complex | |
CN104190381A (en) | Modified attapulgite heavy metal ion adsorbing agent and preparation method thereof | |
CN113912073B (en) | A kind of stripping method of black talc | |
CN102531023A (en) | Method for preparing nanometer flaky yttrium oxide powder | |
CN103288096A (en) | Coal series kaolinite rock calcining method capable of reducing calcining temperature | |
CN104261421B (en) | Hydro-thermal method prepares the method for rice white attapulgite | |
CN101070163A (en) | Hydrogen-store material galapectite and preparing method | |
CN108712999A (en) | Method for preparing synthetic hectorite at low temperature and normal pressure | |
CN103359754A (en) | Preparation method of kaolin-amine grafted complex | |
CN102674381A (en) | Method for preparing nano mullite powder from coal-based kaolin | |
CN101186305A (en) | A kind of method for preparing stearylamine/kaolin intercalation compound | |
CN103950985B (en) | Nanometer bismuth tungstate of a kind of middle short side spherical structure and preparation method thereof | |
CN103950944B (en) | A kind of layer mineral and nano titanium oxide intercalation composite material and preparation method thereof | |
CN105731552B (en) | Talc-titanic acid nickel nanocomposite and preparing method thereof | |
CN103539190B (en) | A kind of preparation method of LaOCl nano material of morphology controllable | |
CN104445240A (en) | Method for in-situ preparation of organized mixed-dimension nanometer material by using attapulgite | |
CN102205971B (en) | Method for preparing nano-sized kaolinite | |
CN102304347B (en) | SiC/carbonyl iron nanometer composite material prepared from agricultural wastes through microwave composite and method thereof | |
CN104071799B (en) | A kind of talcum-magnetic metal nano composite material and preparation method thereof | |
CN103787341A (en) | Method for producing white carbon black from obsidian |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170524 Termination date: 20210201 |