CN105304338A - Counter electrode for quantum-dot sensitized solar cell and manufacturing method thereof - Google Patents
Counter electrode for quantum-dot sensitized solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- CN105304338A CN105304338A CN201510252312.6A CN201510252312A CN105304338A CN 105304338 A CN105304338 A CN 105304338A CN 201510252312 A CN201510252312 A CN 201510252312A CN 105304338 A CN105304338 A CN 105304338A
- Authority
- CN
- China
- Prior art keywords
- electrode
- counter electrode
- solution
- preparation
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 55
- 239000011521 glass Substances 0.000 claims abstract description 26
- 230000003197 catalytic effect Effects 0.000 claims abstract description 20
- 238000000224 chemical solution deposition Methods 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims description 46
- 238000000151 deposition Methods 0.000 claims description 36
- 230000008021 deposition Effects 0.000 claims description 36
- 238000002360 preparation method Methods 0.000 claims description 34
- 239000008367 deionised water Substances 0.000 claims description 22
- 229910021641 deionized water Inorganic materials 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 6
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 5
- 229940046892 lead acetate Drugs 0.000 claims description 5
- 239000000428 dust Substances 0.000 claims description 3
- 239000004519 grease Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims 3
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 239000005030 aluminium foil Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000003760 magnetic stirring Methods 0.000 claims 1
- 239000010957 pewter Substances 0.000 claims 1
- 229910000498 pewter Inorganic materials 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 229910052976 metal sulfide Inorganic materials 0.000 abstract description 5
- 239000003054 catalyst Substances 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 33
- 239000003792 electrolyte Substances 0.000 description 18
- 229910010413 TiO 2 Inorganic materials 0.000 description 17
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 15
- 239000011888 foil Substances 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 5
- 229920001021 polysulfide Polymers 0.000 description 5
- 239000005077 polysulfide Substances 0.000 description 5
- 150000008117 polysulfides Polymers 0.000 description 5
- 239000003599 detergent Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 231100001240 inorganic pollutant Toxicity 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域:Technical field:
本发明属于太阳能利用领域,也属于纳米材料领域,具体涉及一种用于量子点敏化太阳能电池的PbxCu1-xS对电极及其制备方法 The invention belongs to the field of solar energy utilization, and also belongs to the field of nanomaterials, in particular to a PbxCu1 -xS counter electrode for quantum dot sensitized solar cells and a preparation method thereof
背景技术:Background technique:
面对化石能源的日渐枯竭及其使用过程中带来的严重环境污染,取之不尽用之不竭的太阳能成为解决这个问题的重要对策。在各类新型太阳能电池中,制备工艺简单、成本低廉的量子点敏化太阳能电池(QDSSC)引起了研究人员的广泛关注。与染料敏化剂相比,量子点具有可调的能带结构,较高的消光系数,较大的固有偶极矩和激子倍增效应等独特的优点(A. Kongkanand, et al., J. Am. Chem. Soc., 2008, 130, 4007)。因此,研究QDSSC对开发低成本、高效率的太阳能电池具有非常重要的意义。 Facing the depletion of fossil energy and the serious environmental pollution caused by its use, inexhaustible solar energy has become an important countermeasure to solve this problem. Among all kinds of new solar cells, quantum dot-sensitized solar cells (QDSSC) with simple preparation process and low cost have attracted extensive attention of researchers. Compared with dye sensitizers, quantum dots have unique advantages such as adjustable energy band structure, higher extinction coefficient, larger intrinsic dipole moment and exciton multiplication effect (A. Kongkanand, et al., J . Am. Chem. Soc., 2008, 130, 4007). Therefore, the study of QDSSCs is of great significance for the development of low-cost, high-efficiency solar cells.
QDSSC主要由吸附量子点的光阳极、电解液和对电极三部分组成,其中对电极的作用是将外电路的电子传递给电解液使其还原再生。此外,对电极还能加速电解液中氧化还原对与阴极之间的电子交换速率,起到催化作用。I-/I3 -是染料敏化太阳能电池中常用的电解液,贵金属Pt对I-/I3 -具有极高的催化活性和化学稳定性,对电极/电解液界面的电荷转移阻抗(Rct)很低,因而Pt是染料敏化电池中最常用的对电极。但是大部分量子点材料在I-/I3 -电解液中会由于化学腐蚀而不稳定,因而在QDSSC的研究中常用多硫电解液(S2-/Sn 2-)代替I-/I3 -作为电池的空穴传导层。但是在S2-/Sn 2-体系中,Pt等贵金属电极的催化活性很低,造成对电极/电解液界面的电荷转移阻抗很大,这是导致QDSSC的填充因子和光电转换效率偏低的一个重要原因。此外,多硫电解液中的S2-很容易吸附到Pt表面,产生毒化效应,影响对电极的稳定性(J. G. Radich, et al., J. Phys. Chem. Lett., 2011, 2, 2453),所以,Pt并不是适用于QDSSC的最优对电极材料。为了降低对电极/电解液界面的电荷转移阻抗,多种材料被尝试作为对电极应用于QDSSC,比如Cu2S(Pan. Z, et al., ACS Nano, 2013, 7(6): 5215)、PbS(Tachan. Z, et al., J. Phys. Chem. C, 2011, 115(13): 6162)、CoS(Yuan. H, et al., J. Electrochem. Soc., 2013, 160(9): H624)等,这几种金属硫化物对电极材料与Pt相比具有更高的催化活性,成本也较低,但是目前这几种对电极的制备方法通常是先采用HCl或H2SO4腐蚀金属(Cu、Pb等)箔片,然后将多硫电解液滴在箔片表面,从而在金属箔片表面形成一层金属硫化物(Tachan. Z, et al., J. Phys. Chem. C, 2011, 115(13): 6162, G. Hodes, et al., J. Electrochem. Soc., 127(3): 544),这种制备方法虽然比较简便,但是由于封装成电池以后电解液会持续地腐蚀金属箔片,对电极的稳定性很差;并且由于这几种金属硫化物对电极都是在金属箔片上腐蚀而成,金属硫化物与箔片基底之间粘附性很差,再加上金属箔片表面比较粗糙,存在难以封装的问题,因此很难满足实用化的需要。 QDSSC is mainly composed of three parts: a photoanode that adsorbs quantum dots, an electrolyte, and a counter electrode. The role of the counter electrode is to transfer electrons from the external circuit to the electrolyte for reduction and regeneration. In addition, the counter electrode can also accelerate the electron exchange rate between the redox couple in the electrolyte and the cathode, playing a catalytic role. I - /I 3 - is a commonly used electrolyte in dye-sensitized solar cells. The noble metal Pt has extremely high catalytic activity and chemical stability for I - /I 3 - , and the charge transfer resistance of the electrode/electrolyte interface (R ct ) is very low, so Pt is the most commonly used counter electrode in dye-sensitized cells. However, most quantum dot materials are unstable due to chemical corrosion in I - /I 3 - electrolytes, so polysulfur electrolytes (S 2- /S n 2- ) are often used instead of I - /I in the research of QDSSCs 3 - As the hole conducting layer of the battery. However, in the S 2- /S n 2- system, the catalytic activity of noble metal electrodes such as Pt is very low, resulting in a large charge transfer resistance at the electrode/electrolyte interface, which leads to low fill factor and photoelectric conversion efficiency of QDSSC. an important reason. In addition, S 2- in the polysulfide electrolyte is easily adsorbed to the surface of Pt, which produces a poisoning effect and affects the stability of the counter electrode (JG Radich, et al., J. Phys. Chem. Lett., 2011, 2, 2453 ), therefore, Pt is not the optimal counter electrode material for QDSSC. In order to reduce the charge transfer resistance at the counter electrode/electrolyte interface, a variety of materials have been tried as counter electrodes for QDSSCs, such as Cu 2 S (Pan. Z, et al., ACS Nano, 2013, 7(6): 5215) , PbS (Tachan. Z, et al., J. Phys. Chem. C, 2011, 115(13): 6162), CoS (Yuan. H, et al., J. Electrochem. Soc., 2013, 160( 9): H624), etc. These kinds of metal sulfide counter electrode materials have higher catalytic activity and lower cost than Pt, but the current preparation methods of these counter electrodes usually use HCl or H 2 SO4 corrodes the metal (Cu, Pb, etc.) foil, and then the polysulfide electrolyte is dropped on the surface of the foil, thereby forming a layer of metal sulfide on the surface of the metal foil (Tachan. Z, et al., J. Phys. Chem . C, 2011, 115(13): 6162, G. Hodes, et al., J. Electrochem. Soc., 127(3): 544), although this preparation method is relatively simple, but due to the electrolytic The liquid will continuously corrode the metal foil, and the stability of the counter electrode is very poor; and because these kinds of metal sulfide counter electrodes are all corroded on the metal foil, the adhesion between the metal sulfide and the foil substrate is very poor. In addition, the surface of the metal foil is relatively rough, and there is a problem that it is difficult to package, so it is difficult to meet the needs of practical use.
发明内容:Invention content:
本发明所要解决的问题是针对现有Pt对电极成本高、催化性能低以及金属硫化物对电极稳定性差、不易封装的问题,提供一种成本低廉、催化活性较高、制备工艺简单、可大面积制备的用于QDSSC的PbxCu1-xS对电极及其制备方法。这种对电极通过低温溶液法在FTO导电玻璃基底表面沉积而成,形成的对电极材料与基底之间紧密结合,而且PbxCu1-xS厚度可控,易于封装,可以显著提高QDSSC的光电转换效率。 The problem to be solved by the present invention is to provide a low-cost, high catalytic activity, simple preparation process, large-scale Area-fabricated Pb x Cu 1-x S counter electrode for QDSSC and its preparation method. The counter electrode is deposited on the surface of the FTO conductive glass substrate by a low-temperature solution method, and the formed counter electrode material is closely bonded to the substrate, and the thickness of Pb x Cu 1-x S is controllable and easy to package, which can significantly improve the performance of QDSSC. Photoelectric conversion efficiency.
为实现上述目的,本发明采用的技术方案是: In order to achieve the above object, the technical scheme adopted in the present invention is:
一种用于量子点敏化太阳能电池的对电极及其制备方法,其特征在于:对电极的结构为在FTO导电玻璃基底表面生长一层由PbS和CuS组成的催化层,该催化层采用低温化学浴沉积法制备而成。 A counter electrode for quantum dot-sensitized solar cells and a preparation method thereof, characterized in that: the counter electrode has a structure of growing a catalytic layer made of PbS and CuS on the surface of an FTO conductive glass substrate, and the catalytic layer adopts a low-temperature Prepared by chemical bath deposition method.
该方法包括以下步骤: The method includes the following steps:
1)清洗基底 1) Clean the substrate
将FTO导电玻璃基底依次放入乙醇、丙酮和加有洗涤剂的去离子水中各超声清洗15分钟以除去基底表面的灰尘和油脂,再放入去离子水中超声清洗15分钟,洗去含污物的洗涤剂和一些无机污染物,然后再用去离子水超声15分钟进行漂洗,最后用氮气吹干备用。 Put the FTO conductive glass substrate into ethanol, acetone and deionized water with detergent for 15 minutes to remove the dust and grease on the surface of the substrate, and then put it into deionized water for 15 minutes to wash away the dirt. detergent and some inorganic pollutants, rinse with deionized water for 15 minutes, and finally blow dry with nitrogen for later use.
2)化学浴沉积溶液的配制 2) Preparation of chemical bath deposition solution
将4.74 g(12.5 mmol)乙酸铅、2 g(50 mmol)氢氧化钠、1.52 g(20 mmol)硫脲和1.49 g(10 mmol)三乙醇胺溶于400 ml去离子水中,搅拌均匀后形成溶液A。将0.64 g(3.75 mmol)氯化铜和1.19 g(8 mmol)三乙醇胺溶于100 ml去离子水中,搅拌均匀后形成溶液B。然后在搅拌条件下将溶液A慢慢加入到溶液B中,继续搅拌10分钟后形成化学浴沉积溶液。 Dissolve 4.74 g (12.5 mmol) of lead acetate, 2 g (50 mmol) of sodium hydroxide, 1.52 g (20 mmol) of thiourea, and 1.49 g (10 mmol) of triethanolamine in 400 ml of deionized water, and stir to form a solution a. Dissolve 0.64 g (3.75 mmol) of copper chloride and 1.19 g (8 mmol) of triethanolamine in 100 ml of deionized water and stir well to form solution B. Then, solution A was slowly added to solution B under stirring condition, and the chemical bath deposition solution was formed after continuing to stir for 10 minutes.
3)在FTO玻璃基底表面沉积PbxCu1-xS对电极 3) Deposit Pb x Cu 1-x S counter electrode on the surface of FTO glass substrate
将清洗干净的FTO导电玻璃基底固定于夹具上,然后将基底垂直浸入沉积溶液中,用铝箔把盛有溶液的烧杯密封后,放在磁力搅拌器上在室温下进行沉积反应,沉积一段时间后在FTO玻璃基底表面形成一层土黄色或者蓝灰色PbxCu1-xS薄膜,沉积时间越长颜色越深。反应结束后取出电极,用去离子水冲洗干净,并用烘箱烘干备用。 Fix the cleaned FTO conductive glass substrate on the fixture, then immerse the substrate vertically in the deposition solution, seal the beaker containing the solution with aluminum foil, and place it on a magnetic stirrer at room temperature for deposition reaction. After a period of deposition A layer of khaki or blue-gray Pb x Cu 1-x S film is formed on the surface of the FTO glass substrate, and the longer the deposition time, the darker the color. After the reaction, the electrode was taken out, rinsed with deionized water, and dried in an oven for use.
进一步,步骤(2)所述的沉积溶液中Pb2+ 源可以是乙酸铅或硝酸铅,Cu2+源可以是氯化铜或乙酸铜,其中Pb2+,Cu2+和S2-的摩尔比为10:3:16。 Further, the Pb 2+ source in the deposition solution described in step (2) can be lead acetate or lead nitrate, and the Cu 2+ source can be copper chloride or copper acetate, wherein Pb 2+ , Cu 2+ and S 2- The molar ratio is 10:3:16.
进一步,步骤(2)所述的沉积溶液呈强碱性,pH值在13左右。 Further, the deposition solution described in step (2) is strongly alkaline, with a pH value of about 13.
进一步,步骤(3)所述的沉积时间为2~15小时,形成的PbxCu1-xS催化层的厚度为150~700 nm。 Further, the deposition time in step (3) is 2-15 hours, and the thickness of the formed Pb x Cu 1-x S catalytic layer is 150-700 nm.
与现有技术相比,本发明提供了一种用于代替传统Pt对电极的高效PbxCu1-xS对电极材料以及方便快捷的制备方法,本发明的优势在于: Compared with the prior art, the present invention provides an efficient Pb x Cu 1-x S counter electrode material and a convenient and quick preparation method for replacing traditional Pt counter electrodes. The advantages of the present invention are:
1)与Pt对电极相比,PbxCu1-xS对电极对多硫电解液具有更高的催化活性,可以促进对电极/电解液界面的电子传输,从而显著提高电池的光电转换效率,同时可以大幅降低电池的生产成本。 1) Compared with the Pt counter electrode, the Pb x Cu 1-x S counter electrode has higher catalytic activity towards the polysulfide electrolyte, which can promote the electron transport at the counter electrode/electrolyte interface, thereby significantly improving the photoelectric conversion efficiency of the cell , and can greatly reduce the production cost of the battery.
2)与金属箔片上制备的PbS或CuS对电极相比,本发明制备的PbxCu1-xS对电极与基底粘附性好,增强了对电极的稳定性,并便于电池的封装。 2) Compared with the PbS or CuS counter electrode prepared on the metal foil, the Pb x Cu 1-x S counter electrode prepared by the present invention has better adhesion to the substrate, which enhances the stability of the counter electrode and facilitates the packaging of the battery.
3)PbxCu1-xS对电极在室温下通过溶液法制备而成,工艺简单、成本低廉,该方法适用于大规模制备基于柔性导电基底的对电极。 3) The Pb x Cu 1-x S counter electrode is prepared by a solution method at room temperature, with simple process and low cost. This method is suitable for large-scale preparation of counter electrodes based on flexible conductive substrates.
附图说明:Description of drawings:
为使本领域技术人员更好地理解本发明的技术方案,下面将结合附图和具体实施例对本发明做进一步详细描述。这些实施例仅用于说明本发明的目的,其不以任何方式限制本发明的范围。 In order to enable those skilled in the art to better understand the technical solutions of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. These examples are for the purpose of illustrating the invention only and do not limit the scope of the invention in any way.
图1(a)~(d)分别为本发明所述的方法以FTO基底、沉积2小时、7小时和15小时制备的PbxCu1-xS电极SEM图, Figure 1(a)~(d) are the SEM images of Pb x Cu 1-x S electrodes prepared by the method of the present invention with FTO substrate, deposited for 2 hours, 7 hours and 15 hours respectively,
图2为本发明所述的方法在沉积7小时制备的PbxCu1-xS电极断面SEM图, Fig. 2 is the SEM figure of the Pb x Cu 1-x S electrode cross-section prepared by the method of the present invention after deposition for 7 hours,
图3为本发明所述的方法在以FTO基底和沉积7小时制备的PbxCu1-xS电极XRD图, Fig. 3 is the XRD pattern of the Pb x Cu 1-x S electrode prepared by the method of the present invention with the FTO substrate and deposited for 7 hours,
图4为本发明所述的方法以不同沉积时间制备的PbxCu1-xS对电极组装的QDSSC电流-电压曲线图, Fig. 4 is the QDSSC electric current-voltage graph that the method for the present invention prepares with different deposition time Pb x Cu 1-x S counter electrode assembly,
图5为本发明所述的方法以Pt对电极组装的QDSSC电流-电压曲线图。 Fig. 5 is a current-voltage curve diagram of a QDSSC assembled with a Pt counter electrode according to the method of the present invention.
实施例1 Example 1
(一)制备PbxCu1-xS对电极 (1) Preparation of Pb x Cu 1-x S counter electrode
1)清洗基底 1) Clean the substrate
将FTO导电玻璃基底依次放入乙醇、丙酮和加有洗涤剂的去离子水中各超声清洗15分钟以除去基底表面的灰尘和油脂,再放入去离子水中超声清洗15分钟,洗去含污物的洗涤剂和一些无机污染物,然后用去离子水超声15分钟进行漂洗,最后用氮气吹干备用。 Put the FTO conductive glass substrate into ethanol, acetone and deionized water with detergent for 15 minutes to remove the dust and grease on the surface of the substrate, and then put it into deionized water for 15 minutes to wash away the dirt. detergent and some inorganic pollutants, rinse with deionized water for 15 minutes, and finally blow dry with nitrogen for later use.
2)化学浴沉积溶液的配制 2) Preparation of chemical bath deposition solution
将4.74 g(12.5 mmol)乙酸铅、2 g(50 mmol)氢氧化钠、1.52 g(20 mmol)硫脲和1.49 g(10 mmol)三乙醇胺溶于400 ml去离子水中,搅拌均匀后形成溶液A。将0.64 g(3.75 mmol)氯化铜和1.19 g(8 mmol)三乙醇胺溶于100 ml去离子水中,搅拌均匀后形成溶液B。然后在搅拌条件下将溶液A慢慢加入到溶液B中,继续搅拌10分钟后形成化学浴沉积溶液,Pb2+,Cu2+和S2-的摩尔比为10:3:16。 Dissolve 4.74 g (12.5 mmol) of lead acetate, 2 g (50 mmol) of sodium hydroxide, 1.52 g (20 mmol) of thiourea, and 1.49 g (10 mmol) of triethanolamine in 400 ml of deionized water, and stir to form a solution a. Dissolve 0.64 g (3.75 mmol) of copper chloride and 1.19 g (8 mmol) of triethanolamine in 100 ml of deionized water and stir well to form solution B. Then slowly add solution A to solution B under stirring conditions, and continue stirring for 10 minutes to form a chemical bath deposition solution, the molar ratio of Pb 2+ , Cu 2+ and S 2- is 10:3:16.
3)在导电玻璃基底表面沉积PbxCu1-xS对电极 3) Deposit Pb x Cu 1-x S counter electrode on the surface of conductive glass substrate
将清洗干净的FTO导电玻璃基底固定于夹具上,然后将基底垂直浸入沉积溶液中,用铝箔把盛有溶液的烧杯密封后,放在磁力搅拌器上在室温下进行沉积反应,沉积2小时后取出FTO基底,用去离子水冲洗干净,并用烘箱烘干备用,使用扫描电子显微镜测试其厚度为173 nm,这个电极命名为PbxCu1-xS-2。 Fix the cleaned FTO conductive glass substrate on the fixture, then immerse the substrate vertically in the deposition solution, seal the beaker containing the solution with aluminum foil, and place it on a magnetic stirrer at room temperature for deposition reaction. After deposition for 2 hours Take out the FTO substrate, rinse it with deionized water, and dry it in an oven for use. The thickness of the electrode is 173 nm as measured by a scanning electron microscope. This electrode is named Pb x Cu 1-x S-2.
(二)制备CdSe量子点敏化的多孔TiO2光阳极(TiO2/CdSe) (2) Preparation of CdSe quantum dot-sensitized porous TiO 2 photoanode (TiO 2 /CdSe)
通过丝网印刷法将Dyesol-18NRT TiO2浆料涂覆在FTO导电玻璃上,然后在500℃的马弗炉中退火30分钟,降至室温后形成厚度为10 µm,面积为5×5 mm2的多孔TiO2电极。随后采用电化学沉积法(X. Song, et al., Electrochimica Acta, 2013, 108, 449)在多孔TiO2表面沉积CdSe量子点,形成TiO2/CdSe电极。 Dyesol-18NRT TiO 2 paste was coated on FTO conductive glass by screen printing method, and then annealed in a muffle furnace at 500 °C for 30 minutes, and then cooled to room temperature to form a thickness of 10 µm and an area of 5 × 5 mm 2 porous TiO 2 electrodes. Subsequently, CdSe quantum dots were deposited on the porous TiO 2 surface by electrochemical deposition (X. Song, et al., Electrochimica Acta, 2013, 108, 449) to form a TiO 2 /CdSe electrode.
(三)组装量子点敏化太阳能电池并测试 (3) Assemble and test quantum dot-sensitized solar cells
将制备好的TiO2/CdSe光阳极放在台面上,并将裁剪好的热封膜“回形”框架(60 µm)叠放在上述电极四周,然后在热封膜表面盖上对电极,用热封机加热使对电极与光阳极封装在一起,再通过对电极上预先打好的小孔灌入多硫电解液(1 mol/L Na2S和1 mol/L S粉的水溶液),然后用热封膜密封小孔即可完成量子点敏化太阳能电池的制备。组装好的电池在100 mW/cm2 (AM 1.5)的模拟太阳光下测试电流-电压曲线。 Place the prepared TiO 2 /CdSe photoanode on the table, and stack the cut heat-sealing film "return" frame (60 µm) around the above electrode, and then cover the opposite electrode on the surface of the heat-sealing film, Heat with a heat-sealing machine to package the counter electrode and photoanode together, and then pour polysulfur electrolyte (aqueous solution of 1 mol/L Na 2 S and 1 mol/LS powder) through the pre-punched holes on the counter electrode, Then seal the small hole with a heat-sealing film to complete the preparation of the quantum dot-sensitized solar cell. The assembled cells were tested for current-voltage curves under simulated sunlight of 100 mW/cm 2 (AM 1.5).
实施例2 Example 2
(一)制备PbxCu1-xS对电极 (1) Preparation of Pb x Cu 1-x S counter electrode
1)清洗基底 1) Clean the substrate
同实施例1。 With embodiment 1.
2)化学浴沉积溶液的配制 2) Preparation of chemical bath deposition solution
同实施例1。 With embodiment 1.
3)在导电玻璃基底表面沉积PbxCu1-xS对电极 3) Deposit Pb x Cu 1-x S counter electrode on the surface of conductive glass substrate
将清洗干净的FTO导电玻璃基底固定于特制的夹具上,然后将基底垂直浸入沉积溶液中,用铝箔把盛有溶液的烧杯密封后,放在磁力搅拌器上在室温下进行沉积反应,沉积4小时后取出FTO基底,用去离子水冲洗干净,并用烘箱烘干备用,使用扫描电子显微镜测试其厚度为324 nm,这个电极命名为PbxCu1-xS-4。 Fix the cleaned FTO conductive glass substrate on a special fixture, then immerse the substrate vertically in the deposition solution, seal the beaker containing the solution with aluminum foil, and place it on a magnetic stirrer at room temperature for deposition reaction, deposition 4 After one hour, the FTO substrate was taken out, rinsed with deionized water, and dried in an oven for later use. The thickness of the electrode was measured to be 324 nm using a scanning electron microscope. This electrode was named Pb x Cu 1-x S-4.
(二)制备CdSe量子点敏化的多孔TiO2光阳极(TiO2/CdSe) (2) Preparation of CdSe quantum dot-sensitized porous TiO 2 photoanode (TiO 2 /CdSe)
同实施例1。 With embodiment 1.
(三)组装量子点敏化太阳能电池并测试 (3) Assemble and test quantum dot-sensitized solar cells
同实施例1。 With embodiment 1.
实施例3 Example 3
(一)制备PbxCu1-xS对电极 (1) Preparation of Pb x Cu 1-x S counter electrode
1)清洗基底 1) Clean the substrate
同实施例1。 With embodiment 1.
2)化学浴沉积溶液的配制 2) Preparation of chemical bath deposition solution
同实施例1。 With embodiment 1.
3)在导电玻璃基底表面沉积PbxCu1-xS对电极 3) Deposit Pb x Cu 1-x S counter electrode on the surface of conductive glass substrate
将清洗干净的FTO导电玻璃基底固定于特制的夹具上,然后将基底垂直浸入沉积溶液中,用铝箔把盛有溶液的烧杯密封后,放在磁力搅拌器上在室温下进行沉积反应,沉积7小时后取出FTO基底,用去离子水冲洗干净,并用烘箱烘干备用,使用扫描电子显微镜测试其厚度为582 nm,这个电极命名为PbxCu1-xS-7。 Fix the cleaned FTO conductive glass substrate on a special fixture, then immerse the substrate vertically in the deposition solution, seal the beaker containing the solution with aluminum foil, and place it on a magnetic stirrer at room temperature for deposition reaction, deposition 7 After one hour, the FTO substrate was taken out, rinsed with deionized water, and dried in an oven for use. The thickness of the electrode was measured to be 582 nm using a scanning electron microscope. This electrode was named Pb x Cu 1-x S-7.
(二)制备CdSe量子点敏化的多孔TiO2光阳极(TiO2/CdSe) (2) Preparation of CdSe quantum dot-sensitized porous TiO 2 photoanode (TiO 2 /CdSe)
同实施例1。 With embodiment 1.
(三)组装量子点敏化太阳能电池并测试 (3) Assemble and test quantum dot-sensitized solar cells
同实施例1。 With embodiment 1.
实施例4 Example 4
(一)制备PbxCu1-xS对电极 (1) Preparation of Pb x Cu 1-x S counter electrode
1)清洗基底 1) Clean the substrate
同实施例1。 With embodiment 1.
2)化学浴沉积溶液的配制 2) Preparation of chemical bath deposition solution
同实施例1。 With embodiment 1.
3)在导电玻璃基底表面沉积PbxCu1-xS对电极 3) Deposit Pb x Cu 1-x S counter electrode on the surface of conductive glass substrate
将清洗干净的FTO导电玻璃基底固定于特制的夹具上,然后将基底垂直浸入沉积溶液中,用铝箔把盛有溶液的烧杯密封后,放在磁力搅拌器上在室温下进行沉积反应,沉积10小时后取出FTO基底,用去离子水冲洗干净,并用烘箱烘干备用,使用扫描电子显微镜测试其厚度为638 nm,这个电极命名为PbxCu1-xS-10。 Fix the cleaned FTO conductive glass substrate on a special fixture, then immerse the substrate vertically in the deposition solution, seal the beaker containing the solution with aluminum foil, and place it on a magnetic stirrer at room temperature for deposition reaction, deposition 10 After one hour, the FTO substrate was taken out, rinsed with deionized water, and dried in an oven for later use. The thickness of the electrode was measured to be 638 nm using a scanning electron microscope. This electrode was named Pb x Cu 1-x S-10.
(二)制备CdSe量子点敏化的多孔TiO2光阳极(TiO2/CdSe) (2) Preparation of CdSe quantum dot-sensitized porous TiO 2 photoanode (TiO 2 /CdSe)
同实施例1。 With embodiment 1.
(三)组装量子点敏化太阳能电池并测试 (3) Assemble and test quantum dot-sensitized solar cells
同实施例1。 With embodiment 1.
实施例5 Example 5
(一)制备PbxCu1-xS对电极 (1) Preparation of Pb x Cu 1-x S counter electrode
1)清洗基底 1) Clean the substrate
同实施例1。 With embodiment 1.
2)化学浴沉积溶液的配制 2) Preparation of chemical bath deposition solution
同实施例1。 With embodiment 1.
3)在导电玻璃基底表面沉积PbxCu1-xS对电极 3) Deposit Pb x Cu 1-x S counter electrode on the surface of conductive glass substrate
将清洗干净的FTO导电玻璃基底固定于特制的夹具上,然后将基底垂直浸入沉积溶液中,用铝箔把盛有溶液的烧杯密封后,放在磁力搅拌器上在室温下进行沉积反应,沉积15小时后取出FTO基底,用去离子水冲洗干净,并用烘箱烘干备用,使用扫描电子显微镜测试其厚度为672 nm,这个电极命名为PbxCu1-xS-15。 Fix the cleaned FTO conductive glass substrate on a special fixture, then immerse the substrate vertically in the deposition solution, seal the beaker containing the solution with aluminum foil, and place it on a magnetic stirrer at room temperature for deposition reaction, deposition 15 After one hour, the FTO substrate was taken out, rinsed with deionized water, and dried in an oven for later use. The thickness was measured to be 672 nm using a scanning electron microscope. This electrode was named Pb x Cu 1-x S-15.
(二)制备CdSe量子点敏化的多孔TiO2光阳极(TiO2/CdSe) (2) Preparation of CdSe quantum dot-sensitized porous TiO 2 photoanode (TiO 2 /CdSe)
同实施例1。 With embodiment 1.
(三)组装量子点敏化太阳能电池并测试 (3) Assemble and test quantum dot-sensitized solar cells
同实施例1。 With embodiment 1.
图1(a)是FTO导电玻璃基底的表面SEM图,可以看到FTO 导电玻璃表面粗糙不平,SnO2颗粒尺寸不均,棱角分明,呈不规则鱼鳞状。图1(b)~(d)分别是沉积2小时、7小时和15小时制备的PbxCu1-xS电极表面SEM图,从图中可以看到当沉积时间为2小时时,SnO2颗粒的棱角变得比较圆润,暗示其表面沉积了一些纳米颗粒,但是FTO的表面形貌特征依旧可见,说明沉积的纳米颗粒对FTO的覆盖率较低,这些裸露的FTO基底对多硫电解液没有催化活性,组装成器件后对电池性能有不利影响。当沉积时间延长到7小时后,可以明显地看到FTO表面沉积了一层均匀致密的纳米颗粒,并且FTO的形貌特征逐渐消失,说明纳米颗粒对FTO的覆盖率提高。当沉积时间继续延长到15小时,纳米颗粒尺寸变大,沉积的薄膜越来越厚。而且从事物样品可以看到样品表面平滑致密,没有裂纹出现,表明制得的薄膜具有较好的质量。 Figure 1 (a) is the SEM image of the surface of the FTO conductive glass substrate. It can be seen that the surface of the FTO conductive glass is rough and uneven. Figure 1(b)~(d) are SEM images of the surface of Pb x Cu 1-x S electrode prepared by deposition for 2 hours, 7 hours and 15 hours respectively. It can be seen from the figure that when the deposition time is 2 hours, the SnO 2 The edges and corners of the particles become more rounded, implying that some nanoparticles are deposited on the surface, but the surface morphology of FTO is still visible, indicating that the coverage of deposited nanoparticles on FTO is low, and these exposed FTO substrates are resistant to polysulfur electrolytes. There is no catalytic activity, and the battery performance will be adversely affected after being assembled into a device. When the deposition time was extended to 7 hours, it can be clearly seen that a layer of uniform and dense nanoparticles was deposited on the surface of FTO, and the morphology of FTO gradually disappeared, indicating that the coverage of nanoparticles on FTO increased. When the deposition time continued to extend to 15 hours, the size of the nanoparticles became larger and the deposited films became thicker and thicker. Moreover, it can be seen from the material sample that the surface of the sample is smooth and dense without cracks, indicating that the prepared film has a good quality.
图2是沉积7小时制备的PbxCu1-xS电极断面SEM图,从图中可以看到PbxCu1-xS薄膜的厚度比较均匀,约为582 nm。 Figure 2 is the SEM image of the cross-section of the Pb x Cu 1-x S electrode prepared by deposition for 7 hours. It can be seen from the figure that the thickness of the Pb x Cu 1-x S film is relatively uniform, about 582 nm.
图3是沉积7小时制备的PbxCu1-xS电极XRD图,从图中可以看出,除了基底SnO2的衍射峰外,又出现了几个新的衍射峰(用♦标注),与标准图谱(JCPDS No.05-0592)对比发现,位于2θ=26.02°、30.16°、43.12°、71.04°和84.26°的衍射峰分别对应于立方相岩盐结构 PbS的(111)、(200)、(220)、(420)和(511)晶面,说明薄膜中含有PbS这一组分,而位于2θ=27.50°,31.34°和47.46°的衍射峰(用•标注),与六方晶系CuS(JCPDS No. 06-0464)的(101),(103)和(110)晶面对应,说明薄膜中含有CuS这一组分,从而证明制备得到的是PbxCu1-xS薄膜。 Figure 3 is the XRD pattern of the Pb x Cu 1-x S electrode prepared by deposition for 7 hours. It can be seen from the figure that in addition to the diffraction peaks of the substrate SnO 2 , several new diffraction peaks (marked with ♦) appeared, Compared with the standard spectrum (JCPDS No.05-0592), it is found that the diffraction peaks at 2θ=26.02°, 30.16°, 43.12°, 71.04° and 84.26° correspond to (111), (200) of cubic rock-salt structure PbS, respectively. , (220), (420) and (511) crystal planes, indicating that the film contains PbS as a component, and the diffraction peaks (marked with •) at 2θ=27.50°, 31.34° and 47.46° are consistent with the hexagonal crystal system The (101), (103) and (110) crystal planes of CuS (JCPDS No. 06-0464) correspond to each other, indicating that the film contains CuS, which proves that the prepared film is Pb x Cu 1-x S .
图4是由不同沉积时间制备的PbxCu1-xS对电极组装的量子点敏化电池的电流-电压曲线,表1为从图中获得的光电性能参数。从表中可以看到基于PbxCu1-xS-2对电极的电池光电转换效率很低,只有0.95%,这是由于FTO基底表面沉积的PbxCu1-xS催化剂数量太少,大部分裸露的FTO对多硫电解液没有催化活性,对电极/电解液界面电阻太大,严重影响了电池的性能。当沉积时间延长到7小时,FTO表面沉积的PbS催化剂增多,对电极的催化性能进一步提高,使PbxCu1-xS-7构造的电池光电转换效率达到2.39%。当沉积时间继续增加时,PbxCu1-xS的厚度进一步增大,造成对电极的内阻变大,从而使对电极的催化性能降低,电池的光伏参数下降。 Figure 4 is the current-voltage curve of the quantum dot-sensitized cell assembled with Pb x Cu 1-x S counter electrodes prepared at different deposition times, and Table 1 shows the photoelectric performance parameters obtained from the figure. It can be seen from the table that the photoelectric conversion efficiency of the cell based on the Pb x Cu 1-x S-2 counter electrode is very low, only 0.95%, which is due to the low amount of Pb x Cu 1-x S catalyst deposited on the surface of the FTO substrate, Most of the exposed FTO has no catalytic activity for polysulfide electrolytes, and the counter electrode/electrolyte interface resistance is too large, which seriously affects the performance of the battery. When the deposition time was extended to 7 hours, the amount of PbS catalyst deposited on the surface of FTO increased, and the catalytic performance of the counter electrode was further improved, so that the photoelectric conversion efficiency of the cell with Pb x Cu 1-x S-7 structure reached 2.39%. When the deposition time continues to increase, the thickness of Pb x Cu 1-x S further increases, causing the internal resistance of the counter electrode to increase, thereby reducing the catalytic performance of the counter electrode and the photovoltaic parameters of the cell.
表1 各个ZnO/PbS对电极组装的QDSSC光电性能参数 Table 1 The photoelectric performance parameters of QDSSC assembled with various ZnO/PbS counter electrodes
实施例6 Example 6
(一)制备Pt对电极(对比电极) (1) Preparation of Pt counter electrode (comparative electrode)
1)清洗基底 1) Clean the substrate
同实施例1。 With embodiment 1.
2)采用磁控溅射法在FTO基底表面沉积一层厚度为100 nm左右的Pt催化层。 2) Deposit a Pt catalytic layer with a thickness of about 100 nm on the surface of the FTO substrate by magnetron sputtering.
(二)制备CdSe量子点敏化的多孔TiO2光阳极(TiO2/CdSe) (2) Preparation of CdSe quantum dot-sensitized porous TiO 2 photoanode (TiO 2 /CdSe)
同实施例1。 With embodiment 1.
(三)组装量子点敏化太阳能电池并测试 (3) Assemble and test quantum dot-sensitized solar cells
同实施例1。 With embodiment 1.
图5是Pt对电极组装的QDSSC的电流-电压曲线,从图中可以看到Pt组装的电池光电转换效率为1.22%,低于PbxCu1-xS-7电极2.39%的光电转换效率,这是由于Pt对多硫电解液的催化活性较弱造成的。 Figure 5 is the current-voltage curve of the QDSSC assembled with Pt counter electrode. It can be seen from the figure that the photoelectric conversion efficiency of the Pt assembled cell is 1.22%, which is lower than the photoelectric conversion efficiency of 2.39% of the Pb x Cu 1-x S-7 electrode. , which is due to the weak catalytic activity of Pt for polysulfide electrolytes.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510252312.6A CN105304338B (en) | 2015-09-21 | 2015-09-21 | It is a kind of for quantum dot sensitized solar battery to electrode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510252312.6A CN105304338B (en) | 2015-09-21 | 2015-09-21 | It is a kind of for quantum dot sensitized solar battery to electrode and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105304338A true CN105304338A (en) | 2016-02-03 |
CN105304338B CN105304338B (en) | 2019-01-08 |
Family
ID=55201460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510252312.6A Expired - Fee Related CN105304338B (en) | 2015-09-21 | 2015-09-21 | It is a kind of for quantum dot sensitized solar battery to electrode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105304338B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106129142A (en) * | 2016-06-24 | 2016-11-16 | 中原工学院 | A kind of preparation method of vulcanized lead quantum dot |
CN107315215A (en) * | 2017-06-15 | 2017-11-03 | 中国科学院合肥物质科学研究院 | Lead sulfide film of wide absorption spectrum and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208288A (en) * | 2011-03-08 | 2011-10-05 | 武汉大学 | Double-surface light-incident dye sensitized solar cell and preparation method thereof |
CN102881457A (en) * | 2012-09-18 | 2013-01-16 | 中国科学院合肥物质科学研究院 | Universal method for preparing sulfide counter electrode by adopting soft chemical process |
US20130228214A1 (en) * | 2012-03-02 | 2013-09-05 | Miami University | Dye-sensitized solar cell on nickel-coated paper substrate |
CN103560013A (en) * | 2013-11-07 | 2014-02-05 | 武汉大学 | Dye-sensitized solar cell with sulfide counter electrode and preparation method thereof |
-
2015
- 2015-09-21 CN CN201510252312.6A patent/CN105304338B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208288A (en) * | 2011-03-08 | 2011-10-05 | 武汉大学 | Double-surface light-incident dye sensitized solar cell and preparation method thereof |
US20130228214A1 (en) * | 2012-03-02 | 2013-09-05 | Miami University | Dye-sensitized solar cell on nickel-coated paper substrate |
CN102881457A (en) * | 2012-09-18 | 2013-01-16 | 中国科学院合肥物质科学研究院 | Universal method for preparing sulfide counter electrode by adopting soft chemical process |
CN103560013A (en) * | 2013-11-07 | 2014-02-05 | 武汉大学 | Dye-sensitized solar cell with sulfide counter electrode and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
M.ESKANDARI,ET AL: "Copper sulfide/Lead sulfide as a Highly Catalytic Counter Electrode for Zinc Oxide Nanorod Based Quantum Dot Solar Cells", 《ELECTROCHIMICA ACTA》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106129142A (en) * | 2016-06-24 | 2016-11-16 | 中原工学院 | A kind of preparation method of vulcanized lead quantum dot |
CN107315215A (en) * | 2017-06-15 | 2017-11-03 | 中国科学院合肥物质科学研究院 | Lead sulfide film of wide absorption spectrum and preparation method thereof |
CN107315215B (en) * | 2017-06-15 | 2020-12-08 | 中国科学院合肥物质科学研究院 | Lead sulfide film with broad absorption spectrum and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105304338B (en) | 2019-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Inamdar et al. | Surfactant-mediated growth of nanostructured zinc oxide thin films via electrodepositionand their photoelectrochemical performance | |
CN102412369B (en) | Organic/inorganic hybrid solar cell and preparation method thereof | |
Xu et al. | A new in-situ preparation method to CuS electrodes for CdS/CdSe co-sensitized solar cells | |
CN105390613B (en) | A kind of preparation method of perovskite/oxide film electrode | |
US20100065101A1 (en) | Nickel-cobalt alloys as current collectors and conductive interconnects and deposition thereof on transparent conductive oxides | |
CN103560013B (en) | A kind of sulfide is to DSSC of electrode and preparation method thereof | |
CN114134506B (en) | Porous composite photoelectric energy storage material for photoinduced continuous cathode protection and preparation and application thereof | |
Cao et al. | Preparation and photovoltaic properties of CdS quantum dot-sensitized solar cell based on zinc tin mixed metal oxides | |
CN103117173B (en) | Can two-sided enter the quantum dot sensitized solar cell and preparation method thereof of light | |
CN105810832A (en) | Perovskite solar cell optimized based on oxide with excellent conductivity | |
CN106328381B (en) | All solid state quantum dot sensitized solar cell of one kind and preparation method thereof | |
CN108314085A (en) | The preparation method of tungstic trioxide nano-slice complex light anode | |
Manjceevan et al. | Optimization of performance and stability of quantum dot sensitized solar cells by manipulating the electrical properties of different metal sulfide counter electrodes | |
CN105304338A (en) | Counter electrode for quantum-dot sensitized solar cell and manufacturing method thereof | |
Lin et al. | Electroless platinum counter electrodes with Pt-activated self-assembled monolayer on transparent conducting oxide | |
CN102157579B (en) | Solar battery based on silicon nano material | |
CN106847951B (en) | A kind of carbon quantum dot load cuprous sulfocyanide optoelectronic film and preparation method thereof | |
Sun et al. | Efficiency enhanced rutile TiO 2 nanowire solar cells based on an Sb 2 S 3 absorber and a CuI hole conductor | |
CN110359058B (en) | Preparation method of lead zirconate titanate modified hematite nanorod array photoanode | |
CN109326445B (en) | Nano composite counter electrode for quantum dot sensitized solar cell and preparation method | |
CN106803460A (en) | A kind of CuS for quantum dot sensitized solar cell is to electrode and preparation method thereof | |
CN109920649B (en) | One-dimensional ultralong TiO2Nanorod array, preparation method thereof and application of nanorod array in dye-sensitized solar cell | |
CN113707461A (en) | CdS/CdSe quantum dot sensitized solar cell photo-anode based on zinc-tin hydrotalcite, cell and preparation method of CdSe/CdSe quantum dot sensitized solar cell photo-anode | |
CN102881457B (en) | The universal method of sulfide to electrode is prepared based on softening method | |
CN115433943B (en) | An energy storage semiconductor composite photoanode for metal corrosion protection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190108 Termination date: 20190921 |