CN105152146A - Preparation method of TiN nano-material - Google Patents
Preparation method of TiN nano-material Download PDFInfo
- Publication number
- CN105152146A CN105152146A CN201510489657.3A CN201510489657A CN105152146A CN 105152146 A CN105152146 A CN 105152146A CN 201510489657 A CN201510489657 A CN 201510489657A CN 105152146 A CN105152146 A CN 105152146A
- Authority
- CN
- China
- Prior art keywords
- source
- tin
- titanium
- titanium nitride
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明一种氮化钛纳米材料的制备方法,将表面活性剂溶于溶剂中,加入有机钛源和无机盐,混合均匀,之后加入的酚醛树脂乙醇溶液,最后加入有机硅源,在水浴下充分搅拌形成均相溶液,随后倒入一个反应容器中,放在干燥箱中进行交联,从而得到透明的膜状物;将透明膜状物刮下,在氮气保护下进行焙烧,自然冷却到室温,得到氮化钛/二氧化硅/金属/碳复合物;将TiN/SiO2/M/C复合物加入到氢氧化钠溶液中,水浴搅拌,离心水洗,洗到流出液为中性;然后继续用HCl水浴搅拌,离心水洗;自然干燥,得到TiN/C复合纳米材料,将TiN/C复合纳米材料在马弗炉中焙烧除去碳,得到氮化钛纳米材料。本发明工艺简单、合成时间短。
The preparation method of a titanium nitride nanomaterial in the present invention comprises dissolving the surfactant in a solvent, adding an organic titanium source and an inorganic salt, mixing evenly, then adding the ethanol solution of the phenolic resin, and finally adding the organic silicon source, under a water bath Thoroughly stir to form a homogeneous solution, then pour it into a reaction container, and put it in a drying oven for crosslinking to obtain a transparent film; scrape off the transparent film, bake it under nitrogen protection, and cool naturally to At room temperature, a titanium nitride/silicon dioxide/metal/carbon composite was obtained; the TiN/SiO 2 /M/C composite was added to a sodium hydroxide solution, stirred in a water bath, centrifuged and washed until the effluent was neutral; Then continue stirring with HCl water bath, centrifuge and water washing; dry naturally to obtain TiN/C composite nanomaterials, and roast the TiN/C composite nanomaterials in a muffle furnace to remove carbon to obtain titanium nitride nanomaterials. The invention has simple process and short synthesis time.
Description
技术领域 technical field
本发明属于无机材料领域,涉及纳米材料,特别是一种氮化钛纳米材料的制备方法。 The invention belongs to the field of inorganic materials and relates to nanometer materials, in particular to a preparation method of titanium nitride nanometer materials.
背景技术 Background technique
过渡金属氮化物TiN介孔具有高熔点、高硬度、优良的化学稳定性和耐腐蚀性,因此成为切削工具、耐磨部件的优选材料,同时常被用作复合材料中的增强相等。在前人的研究工作中,已经有许多种方法成功合成出来了氮化钛粉末。具体包括以下几种方法。 Transition metal nitride TiN mesoporous has high melting point, high hardness, excellent chemical stability and corrosion resistance, so it becomes the preferred material for cutting tools and wear-resistant parts, and is often used as reinforcement in composite materials. In previous research work, titanium nitride powder has been successfully synthesized by many methods. Specifically include the following methods.
金属钛粉直接氮化法 Titanium powder direct nitriding method
S.Rtimi使用双共聚焦磁控溅射***制备得到TiN,使用直径为5cm的钛片作为靶向,之后在一定的压力范围内,向钛片喷射氩气跟氮气的混合气,之后得到氮化钛材料。(S.Rtimi,O.Baghriche,R.Sanjines,C.Pulgarina,M.Ben-Simon,J.-C.Lavanchyd,A.Houase,J.Kiwi.Photocatalysis/catalysisbyinnovativeTiNandTiN-Agsurfacesinactivatebacteriaundervisiblelight.Environmental123-124(2012)306-315.) S.Rtimi used a double confocal magnetron sputtering system to prepare TiN, using a titanium sheet with a diameter of 5cm as a target, and then spraying a mixture of argon and nitrogen on the titanium sheet within a certain pressure range, and then obtained nitrogen Titanium material. (S.Rtimi, O.Baghriche, R.Sanjines, C.Pulgarina, M.Ben-Simon, J.-C.Lavanchyd, A.Houase, J.Kiwi.Photocatalysis/catalysisbyinnovativeTiNandTiN-Agsurfacesinactivatebacteriaundervisiblelight.Environmental123-124(2012) 306-315.)
高温还原氮化法 High temperature reduction nitriding method
鲁元等以二氧化钛和碳粉为原料,采用碳热还原法制备得到了多孔氮化钛。具体步骤是把二氧化钛和碳黑以摩尔比为1:2的比例配好,然后将配好的粉料与磨球放入混料罐,以无水乙醇为介质用行星球磨机湿混24h,之后烘干,用200目的筛网过筛,之后放在模具中压成长方形,然后放在0.5MPa的氮气压力下进行烧结,烧结的温度为1600~1750℃,得到了高气孔率的氮化钛。但是实验中烧结温度较高,不能满足日常的制备需要(鲁元,龚楠,荆强征,李京京,炱柯.碳热还原法制备多孔氮化钛陶瓷[J].陶瓷学报,2009,32(2),177-182)。 Lu Yuan et al prepared porous titanium nitride by carbothermal reduction method using titanium dioxide and carbon powder as raw materials. The specific steps are to mix titanium dioxide and carbon black with a molar ratio of 1:2, then put the prepared powder and grinding balls into the mixing tank, and use absolute ethanol as the medium to wet mix with a planetary ball mill for 24 hours, then Dry it, sieve it with a 200-mesh screen, put it in a mold, press it into a rectangle, and then sinter it under a nitrogen pressure of 0.5MPa. The sintering temperature is 1600~1750°C, and titanium nitride with high porosity is obtained. . However, the sintering temperature in the experiment is too high, which cannot meet the daily preparation needs (Lu Yuan, Gong Nan, Jing Qiangzheng, Li Jingjing, Qi Ke. Preparation of porous titanium nitride ceramics by carbothermal reduction[J]. Ceramic Journal, 2009, 32 (2), 177-182).
李和兴等人先通过醇热法合成了氮化钛前驱物,之后再在氨气保护下在800~1000℃进行碳热还原,最后得到不同形貌的氮化钛。(李和兴,张鹏,朱建,卞振锋.一种原位碳热还原氮化法制备氮化钛的方法[P].中国:CN102659087A,2012-09-12) Li Hexing and others first synthesized titanium nitride precursors by alcohol thermal method, and then carried out carbothermal reduction at 800-1000 °C under the protection of ammonia gas, and finally obtained titanium nitride with different morphologies. (Li Hexing, Zhang Peng, Zhu Jian, Bian Zhenfeng. A method for preparing titanium nitride by in-situ carbothermal reduction nitriding [P]. China: CN102659087A, 2012-09-12)
电化学法 Electrochemical method
朱福兴等采用电解法制备氮化钛,具体方法是在钛可溶阳极电解制备金属钛的过程中,在阴极通入氮气,氮气与阴极产生的钛反应生成氮化钛,之后分离电解质和氮化钛,即得到氮化钛产品。其中电解的温度为650~850℃,分离电解质的过程中需要用到蒸馏、水洗和酸洗等的步骤。蒸馏的温度为950~1000℃。虽然他能采取一步制备得到氮化钛,但是合成的步骤比较麻烦,而且蒸馏所需的温度也比较高,一般的装置不能满足要求,因此这种方法还是存在很大的缺陷(朱福兴,穆天柱,邓斌,何安西,程晓哲,马尚润,陈兵,郑权,张瑶.制备氮化钛的方法,中国,CN104498982A.2015-04-08.)。 Zhu Fuxing and others used electrolysis to prepare titanium nitride. The specific method was to pass nitrogen gas into the cathode during the electrolysis of titanium soluble anode to produce titanium nitride, and then separate the electrolyte and nitriding. Titanium, that is, titanium nitride products. Among them, the temperature of electrolysis is 650~850°C, and steps such as distillation, water washing and pickling are required in the process of separating the electrolyte. The temperature of distillation is 950~1000℃. Although he can prepare titanium nitride in one step, the synthesis steps are cumbersome, and the temperature required for distillation is relatively high, and the general equipment cannot meet the requirements, so this method still has great defects (Zhu Fuxing, Mu Tian Zhu, Deng Bin, He Anxi, Cheng Xiaozhe, Ma Shangrun, Chen Bing, Zheng Quan, Zhang Yao. Method for preparing titanium nitride, China, CN104498982A.2015-04-08.).
RomuloR.M.等利用阴极笼等离子体沉积技术制备得到了TiN,就是利用常规的具有两同心阴极笼的等离子体反应器,在最大电压为1500V,电流为2A的情况下,在阴极笼放置两个厚度为2.0mm的两个钛片,之后在制备的过程中通入N2/H2(80%N2)混合气,处理温度保持在400℃,制备得到氮化钛。虽然通过这种方法得到了氮化钛,但是要在高的电压的情况下,不是太安全,因此还有待进一步改善(RomuloR.M.deSousa,PatriciaS.Sato,BartolomeuC.Viana,ClodomiroAlvesJr,AkioNishimoto,PedroA.P.Nascente.CathodiccageplasmadepositionofTiNandTiO2thinfilmsonsiliconsubstrates.J.Vac.Sci.Technol.A33(4),Jul/Aug2015)。 RomuloR.M. et al. prepared TiN by cathode cage plasma deposition technology, which is to use a conventional plasma reactor with two concentric cathode cages. Under the condition of a maximum voltage of 1500V and a current of 2A, two cathode cages are placed. Two titanium sheets with a thickness of 2.0mm were passed through N 2 /H 2 (80%N 2 ) mixed gas during the preparation process, and the treatment temperature was kept at 400°C to prepare titanium nitride. Although titanium nitride has been obtained by this method, it is not too safe under the condition of high voltage, so it needs to be further improved (RomuloR.M.deSousa, PatriciaS.Sato, BartolomeuC.Viana, ClodomiroAlvesJr, AkioNishimoto, PedroA .P.Nascente.CathodiccageplasmapositionofTiNandTiO2thinfilmsonsiliconsubstrates.J.Vac.Sci.Technol.A33(4),Jul/Aug2015).
综上所述,之前合成氮化钛的方法有金属钛粉直接氮化法,利用氧化钛碳热还原法等。但是,金属钛粉直接氮化法容易在钛表面形成TiN薄膜阻碍反应的进行,而且工艺比较复杂,成本不够,纯度不高。同理,使用电化学的方法操作较复杂,难以进行有效的控制。而利用二氧化钛为原料经过碳热还原往往需要很高的焙烧温度。因此需要我们寻找一种在操作简便,在较低温度下就能得到介孔氮化钛的方法。 To sum up, the previous methods for synthesizing titanium nitride include the direct nitriding method of metal titanium powder, and the carbon thermal reduction method of titanium oxide. However, the direct nitriding method of metal titanium powder is easy to form a TiN film on the titanium surface to hinder the progress of the reaction, and the process is relatively complicated, the cost is not enough, and the purity is not high. Similarly, the electrochemical method is more complicated to operate, and it is difficult to carry out effective control. The use of titanium dioxide as a raw material often requires a high calcination temperature through carbothermal reduction. Therefore, we need to find a method for obtaining mesoporous titanium nitride with simple operation and low temperature.
发明内容 Contents of the invention
针对现有技术中的上述技术问题,本发明提供了一种氮化钛纳米材料的制备方法,所述的这种氮化钛纳米材料的制备方法解决了现有技术中的制备氮化钛纳米材料的方法工艺复杂,纯度不高的技术问题。 Aiming at the above-mentioned technical problems in the prior art, the present invention provides a method for preparing titanium nitride nanomaterials, which solves the problem of preparing titanium nitride nanomaterials in the prior art. The method and process of the material are complex and the technical problem of low purity.
本发明提供了一种氮化钛纳米材料的制备方法,包括以下步骤: The invention provides a method for preparing titanium nitride nanomaterials, comprising the following steps:
(1)、将表面活性剂溶于混合均匀的溶剂中,然后加入有机钛源和无机盐,搅拌混合均匀,之后加入质量百分比浓度为15~25%的酚醛树脂乙醇溶液,最后加入有机硅源,在35~50℃水浴下充分搅拌形成均相溶液,随后倒入一个反应容器中,放在35~45℃鼓风干燥箱中干燥15~30h,然后放到80~110℃鼓风干燥箱中进行交联,从而得到透明的膜状物, (1) Dissolve the surfactant in a well-mixed solvent, then add the organic titanium source and inorganic salt, stir and mix evenly, then add the phenolic resin ethanol solution with a mass percentage concentration of 15-25%, and finally add the organic silicon source , fully stirred in a water bath at 35~50°C to form a homogeneous solution, then poured into a reaction container, dried in a blast drying oven at 35~45°C for 15~30 hours, and then placed in a blast drying oven at 80~110°C Cross-linking in to obtain a transparent film,
上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、酚醛树脂溶液按质量比进行计算,即的表面活性剂、溶剂、有机钛源、无机盐、硅源、酚醛树脂溶液1.0:10~30:1.5~5:1~4:0.3~4:0.8~3的比例进行反应 The surfactant, solvent, organic titanium source, inorganic salt, silicon source, and phenolic resin solution used above are calculated by mass ratio, that is, the surfactant, solvent, organic titanium source, inorganic salt, silicon source, and phenolic resin solution are 1.0 :10~30:1.5~5:1~4:0.3~4:0.8~3 ratio for reaction
所述的表面活性剂为EO20PO70EO20、EO106PO70EO106、或者EO132PO60EO132中的一种或两种以上的混合物; The surfactant is one or a mixture of two or more of EO 20 PO 70 EO 20 , EO 106 PO 70 EO 106 , or EO 132 PO 60 EO 132 ;
所述溶剂为乙醇、水、乙二醇、或者甲醇中一种或两种以上的混合物; The solvent is one or a mixture of two or more in ethanol, water, ethylene glycol, or methanol;
所述有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述无机盐为六水合硝酸镍、九水合硝酸铁、或者六水合硝酸钴中的一种或两种及以上混合物; The inorganic salt is one or two or more mixtures of nickel nitrate hexahydrate, iron nitrate nonahydrate, or cobalt nitrate hexahydrate;
所述的有机硅源为正硅酸四乙酯、正硅酸四甲酯、正硅酸四丙酯、或者正硅酸四丁酯中的一种或两种以上组成的混合物; The organosilicon source is tetraethyl orthosilicate, tetramethyl orthosilicate, tetrapropyl orthosilicate, or one or a mixture of two or more of tetrabutyl orthosilicate;
(2)、将步骤1中得到的透明膜状物刮下,在管式炉中在氮气保护下升温至700~900℃进行焙烧1~3小时,然后自然冷却到室温,即得到氮化钛/二氧化硅/金属/碳(TiN/SiO2/M/C)的复合物; (2) Scrape off the transparent film obtained in step 1, heat up to 700-900°C in a tube furnace under the protection of nitrogen for 1-3 hours, and then naturally cool to room temperature to obtain titanium nitride /Silicon dioxide/metal/carbon (TiN/SiO 2 /M/C) composite;
(3)、将步骤(2)得到的TiN/SiO2/M/C复合物加入到0.2~2mol/L的氢氧化钠溶液中,其中TiN/SiO2/M/C和浓度为0.2~2mol/L的氢氧化钠溶液的用量,按TiN/SiO2/M/C:浓度为0.2~2mol/L的氢氧化钠溶液为1g:10~30ml的比例计算。35~45℃水浴搅拌10~40min,然后离心水洗,洗到流出液为中性;然后继续用1~3mol/LHCl35~45℃水浴搅拌10~40min,其中TiN/SiO2/M/C和浓度为1~3mol/LHCl的用量,按照TiN/SiO2/M/C:浓度为1~3mol/LHCl为1g:20~50ml的比例计算,然后离心水洗;自然干燥,得到TiN/C复合纳米材料; (3) Add the TiN/SiO 2 /M/C compound obtained in step (2) into 0.2~2mol/L sodium hydroxide solution, wherein the concentration of TiN/SiO 2 /M/C is 0.2~2mol The amount of sodium hydroxide solution per L is calculated according to the ratio of TiN/SiO 2 /M/C: 1g of sodium hydroxide solution with a concentration of 0.2~2mol/L: 10~30ml. Stir in a water bath at 35~45°C for 10 ~40min, then centrifuge and wash with water until the effluent is neutral; The amount of 1~3mol/LHCl is calculated according to the ratio of TiN/SiO 2 /M/C: concentration of 1~3mol/LHCl is 1g:20~50ml, then centrifugal washing; natural drying to obtain TiN/C composite nanomaterials ;
(4)、将步骤(3)中的得到的TiN/C复合纳米材料在马弗炉中在400~500℃下焙烧8~12h除去碳,然后就得到氮化钛纳米材料。 (4) Calcining the TiN/C composite nano-material obtained in step (3) in a muffle furnace at 400-500° C. for 8-12 hours to remove carbon, and then obtain the titanium nitride nano-material.
进一步的,步骤(2)中所述的升温,首先按速率1℃/min从室温升到300℃,然后再按速率为5℃/min升至700~900℃。 Further, the temperature increase described in step (2) is firstly raised from room temperature to 300°C at a rate of 1°C/min, and then raised to 700-900°C at a rate of 5°C/min.
进一步的,步骤(1)中所用的上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、酚醛树脂溶液的质量比为1:10:1.5:1:0.3:0.8; Further, the mass ratio of the surfactant, solvent, organic titanium source, inorganic salt, silicon source, and phenolic resin solution used in step (1) is 1:10:1.5:1:0.3:0.8;
所述的表面活性剂为EO20PO70EO20; Described surfactant is EO 20 PO 70 EO 20 ;
所述的有机硅源为正硅酸四乙酯; Described organosilicon source is tetraethyl orthosilicate;
所述的有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述的无机盐为六水合硝酸镍; Described inorganic salt is nickel nitrate hexahydrate;
所述的溶剂为乙二醇和水。 Described solvent is ethylene glycol and water.
进一步的,步骤(1)中所用的上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、酚醛树脂溶液的质量比为1:20:3:2.5:2.2:1.9; Further, the mass ratio of the surfactant, solvent, organic titanium source, inorganic salt, silicon source, and phenolic resin solution used in step (1) is 1:20:3:2.5:2.2:1.9;
所述的表面活性剂为EO106PO70EO106; Described surfactant is EO 106 PO 70 EO 106 ;
所述的有机硅源为正硅酸四甲酯; Described organosilicon source is tetramethyl orthosilicate;
所述的有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述的无机盐为九水合硝酸铁; Described inorganic salt is ferric nitrate nonahydrate;
所述的溶剂为乙醇和水。 Described solvent is ethanol and water.
进一步的,步骤(1)中所用的上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、酚醛树脂溶液的质量比为1:30:5:4:4:3; Further, the mass ratio of the surfactant, solvent, organic titanium source, inorganic salt, silicon source, and phenolic resin solution used in step (1) is 1:30:5:4:4:3;
所述的表面活性剂为EO132PO60EO132; Described surfactant is EO 132 PO 60 EO 132 ;
所述的有机硅源为正硅酸四丙酯; Described organosilicon source is tetrapropyl orthosilicate;
所述的有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述的无机盐为六水合硝酸钴; Described inorganic salt is cobalt nitrate hexahydrate;
所述的溶剂为甲醇和水。 Described solvent is methanol and water.
本发明将表面活性剂、有机钛源、无机盐、硅源和碳源按照一定的比例溶解在溶剂中,在一定温度下,通过有机-无机协同作用,并进一步在一定温度下在氮气气氛下碳化,获得氮化钛/二氧化硅/金属/碳的复合物,用碱溶液除去二氧化硅,用盐酸除去金属。然后再在马弗炉中焙烧除去碳,最后得到氮化钛纳米材料。最终得到的氮化钛纳米材料的比表面积为70~120m2/g、孔体积为0.26~0.42m3/g,孔径为7.6~9.1nm。 In the present invention, surfactants, organic titanium sources, inorganic salts, silicon sources and carbon sources are dissolved in a solvent according to a certain ratio, at a certain temperature, through organic-inorganic synergy, and further at a certain temperature under a nitrogen atmosphere Carbonization to obtain a titanium nitride/silicon dioxide/metal/carbon composite, the silicon dioxide is removed with an alkaline solution, and the metal is removed with hydrochloric acid. Then it is fired in a muffle furnace to remove carbon, and finally titanium nitride nanomaterials are obtained. The finally obtained titanium nitride nanomaterial has a specific surface area of 70-120 m 2 /g, a pore volume of 0.26-0.42 m 3 /g, and a pore diameter of 7.6-9.1 nm.
本发明和已有技术相比,其技术进步是显著的。本发明利用有机钛和酚醛树脂分别作为钛源和碳源,其中加入无机盐作为催化剂,利用蒸发诱导自组装的方法在较低温度下得到TiN介孔纳米材料。本发明解决了现有技术中的TiN在一般的制备过程中需要较高温度焙烧、操作繁复等缺点,从而抑制了TiN的大规模生产。本发明操作简便、反应时间短,最主要是在较低温度下焙烧就能够得到TiN的制备方法,其制备过程简单可控,反应条件温和,焙烧温度低,一般的管式炉即可满足焙烧的要求,适用于规模化生产等特点。 Compared with the prior art, the technical progress of the present invention is remarkable. The invention uses organic titanium and phenolic resin as titanium source and carbon source respectively, adds inorganic salt as catalyst, and uses evaporation-induced self-assembly method to obtain TiN mesoporous nanometer material at relatively low temperature. The invention solves the disadvantages of high-temperature roasting and complicated operation in the general preparation process of TiN in the prior art, thereby inhibiting the large-scale production of TiN. The present invention is easy to operate and has short reaction time. The most important thing is that the preparation method of TiN can be obtained by roasting at a relatively low temperature. requirements, suitable for large-scale production and other characteristics.
附图说明 Description of drawings
图1是实施例1中氮化钛纳米材料大角XRD图谱; Fig. 1 is the large-angle XRD spectrum of titanium nitride nanomaterials in embodiment 1;
图2是实施例1中氮化钛纳米材料的氮气吸附-脱附图; Fig. 2 is the nitrogen adsorption-removal drawing of titanium nitride nanomaterial in embodiment 1;
图3是实施例1中氮化钛纳米材料的孔径分布图。 3 is a pore size distribution diagram of titanium nitride nanomaterials in Example 1.
具体实施方式 Detailed ways
以下通过具体实施例并结合附图来对本发明进行进一步的描述,但本发明的保护范围不限于此。 The present invention will be further described below through specific embodiments in conjunction with the accompanying drawings, but the protection scope of the present invention is not limited thereto.
所述方法如无特别说明。均为常规方法。所述材料如无特别说明,均能从公开商业途径买得到。 The method is unless otherwise specified. are conventional methods. The materials can be purchased from open commercial channels unless otherwise specified.
本发明各实施例所用的仪器或设备的型号及生产厂家信息如下: The model and manufacturer's information of instrument or equipment used in each embodiment of the present invention are as follows:
电子天平JA203上海海康电子仪器厂 Electronic Balance JA203 Shanghai Haikang Electronic Instrument Factory
马弗炉DC-B8/11北京独创科技有限公司 Muffle Furnace DC-B8/11 Beijing Original Technology Co., Ltd.
电化学工作站CH660D上海辰华仪器公司 Electrochemical workstation CH660D Shanghai Chenhua Instrument Co., Ltd.
电热恒温鼓风干燥箱DHG-9070A上海一恒科学仪器 Electric constant temperature blast drying oven DHG-9070A Shanghai Yiheng Scientific Instruments
管式炉,型号SL1700Ⅱ型,生产厂家:上海升利测试仪器有限公司; Tube furnace, model SL1700Ⅱ, manufacturer: Shanghai Shengli Testing Instrument Co., Ltd.;
X-射线衍射仪(XRD),XPERTPRO荷兰帕纳科公司; X-ray diffractometer (XRD), XPERTPRO Holland PANalytical company;
全自动物理吸附分析仪,ASAP2020美国麦克公司; Fully automatic physical adsorption analyzer, ASAP2020 American Mike Company;
实施例1 Example 1
一种在较低温度下TiN纳米材料的制备方法,其特征在于包括以下步骤: A kind of preparation method of TiN nanometer material under lower temperature, it is characterized in that comprising the following steps:
(1)、在40℃下,将0.3g表面活性剂溶于4g溶剂中混合均匀的溶液中,然后加入0.5ml有机钛源和0.3g无机盐,搅拌混合均匀,之后加入0.4g质量百分比浓度为20%的酚醛树脂乙醇溶液,最后加入0.24g有机硅源,在40℃水浴下充分搅拌形成均相溶液,随后倒入表面皿中,放在40℃鼓风干燥箱24h,然后放到100℃鼓风干燥箱中进行交联。从而得到透明的膜状物。 (1) At 40°C, dissolve 0.3g of surfactant in 4g of solvent and mix uniformly, then add 0.5ml of organic titanium source and 0.3g of inorganic salt, stir and mix evenly, and then add 0.4g of mass percentage concentration It is 20% ethanol solution of phenolic resin, finally add 0.24g organic silicon source, fully stir in 40°C water bath to form a homogeneous solution, then pour it into a watch glass, put it in a blast drying oven at 40°C for 24h, and then put it in 100°C The cross-linking was carried out in a forced air drying oven at ℃. Thus, a transparent film was obtained.
上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、质量百分比浓度为20%的酚醛树脂溶液的量,按质量比计算,表面活性剂:溶剂:有机钛源:无机盐:硅源:质量百分比浓度为20%的酚醛树脂溶液为1.0:13:1.7:1:1.3:0.8; The amount of the above-mentioned used surfactant, solvent, organic titanium source, inorganic salt, silicon source, and mass percent concentration of phenolic resin solution is 20%, calculated by mass ratio, surfactant: solvent: organic titanium source: inorganic salt: Silicon source: phenolic resin solution with a mass percent concentration of 20% is 1.0:13:1.7:1:1.3:0.8;
所述的表面活性剂为EO20PO70EO20; Described surfactant is EO 20 PO 70 EO 20 ;
所述溶剂为乙醇和水的混合物; The solvent is a mixture of ethanol and water;
所述有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述无机盐为六水合硝酸镍; The inorganic salt is nickel nitrate hexahydrate;
所述的有机硅源为正硅酸四乙酯; Described organosilicon source is tetraethyl orthosilicate;
柠檬酸钛的制备步骤如下; The preparation steps of titanium citrate are as follows;
将100mmol钛酸四丁酯溶解在50ml乙醇溶剂中制备得到A溶液,将100mmol柠檬酸溶解在100ml乙醇溶剂中制备得到B溶液,之后B溶液在快速搅拌下缓慢地滴入溶液A中,并且在40℃水浴下搅拌2h,然后40℃减压蒸发1h,获得的溶胶重新溶于蒸馏水中配成1M柠檬酸钛水溶液,密度约为1g/ml。 Dissolve 100mmol tetrabutyl titanate in 50ml ethanol solvent to prepare A solution, and dissolve 100mmol citric acid in 100ml ethanol solvent to prepare B solution, then B solution is slowly dropped into solution A under rapid stirring, and in Stir in a water bath at 40°C for 2h, then evaporate under reduced pressure at 40°C for 1h, and redissolve the obtained sol in distilled water to prepare a 1M titanium citrate aqueous solution with a density of about 1g/ml.
(2)、将步骤1中得到的透明膜状物刮下,在管式炉中在氮气保护下先按速率1℃/min从室温升到300℃,焙烧两个小时,再按速率为5℃/min升至700℃进行焙烧2h,然后自然冷却到室温,即得到TiN/SiO2/C的复合物。 (2) Scrape off the transparent membrane obtained in step 1, and raise it from room temperature to 300°C at a rate of 1°C/min in a tube furnace under the protection of nitrogen, bake it for two hours, and then press the rate of Rising to 700°C at 5°C/min for 2h calcination, and then naturally cooling to room temperature to obtain a TiN/SiO 2 /C composite.
(3)、将步骤(2)得到的TiN/SiO2/Ni/C复合物加入到0.2mol/L20ml的氢氧化钠溶液中,40℃水浴搅拌10min,然后离心水洗,洗到流出液为中性,;然后继续用2MHCl20ml40℃水浴搅拌10~40min,离心水洗;自然干燥,得到TiN/C复合纳米材料。 (3) Add the TiN/SiO 2 /Ni/C composite obtained in step (2) into 0.2mol/L 20ml sodium hydroxide solution, stir in a water bath at 40°C for 10min, then centrifuge and wash until the effluent is medium Then continue to stir with 2MHCl20ml40℃ water bath for 10~40min, centrifuge and wash with water; dry naturally to obtain TiN/C composite nanomaterials.
(4)、将步骤(3)中的得到的TiN/C复合纳米材料在马弗炉中在400℃下焙烧12h除去碳,然后就得到了纯的氮化钛。 (4) The TiN/C composite nanomaterial obtained in step (3) was calcined in a muffle furnace at 400° C. for 12 hours to remove carbon, and then pure titanium nitride was obtained.
采用X射线粉末衍射仪(PANalyticalX′Pertdiffractometer)对上述步骤(3)最终所得的氮化钛纳米材料进行测定,所得的大角XRD图谱如图2所示,从图2可以看出代表TiN的衍射峰非常尖锐,证明了形成的介孔TiN具有高的结晶度,而且镍是以单质的形式存在,并没有参加反应形成化合物,只是起来了催化剂的作用。 Use X-ray powder diffractometer (PANalyticalX'Pertdiffractometer) to measure the titanium nitride nanomaterial finally obtained in the above step (3). The obtained large-angle XRD pattern is shown in Figure 2, and it can be seen from Figure 2 that the diffraction peak representing TiN It is very sharp, which proves that the formed mesoporous TiN has high crystallinity, and nickel exists in the form of simple substance, and does not participate in the reaction to form compounds, but only acts as a catalyst.
采用比表面积及孔隙度分析仪器,按照氮气吸脱附方法对上述步骤(3)所得的氮化钛纳米材料进行测定,所得的氮气吸附-脱附结果如图3所示,从图3中可以看出曲线具有非常明显的回滞环,由此表明了制备得到的二氧化铁/碳纳米复合材料是介孔材料,且具有大的比表面积其比表面积为87m2/g,孔容为0.38cm3/g,孔径为8.8nm。 Adopt specific surface area and porosity analysis instrument, measure the titanium nitride nanometer material that above-mentioned step (3) gains according to nitrogen adsorption-desorption method, the nitrogen adsorption-desorption result of gained is as shown in Figure 3, can be obtained from Figure 3 It can be seen that the curve has a very obvious hysteresis loop, which indicates that the prepared iron dioxide/carbon nanocomposite is a mesoporous material with a large specific surface area of 87m 2 /g and a pore volume of 0.38 cm 3 /g, and the pore diameter is 8.8nm.
实施例2 Example 2
一种在较低温度下TiN纳米材料的制备方法,其特征在于包括以下步骤: A kind of preparation method of TiN nanometer material under lower temperature, it is characterized in that comprising the following steps:
(1)、在40℃下,将0.6g表面活性剂溶于12g溶剂中混合均匀的溶液中,然后加入1.8ml有机钛源和1.5g无机盐,搅拌混合均匀,之后加入1.2g质量百分比浓度为20%的酚醛树脂乙醇溶液,最后加入0.6g有机硅源,在40℃水浴下充分搅拌形成均相溶液,随后倒入表面皿中,放在40℃鼓风干燥箱24h,然后放到100℃鼓风干燥箱中进行交联。从而得到透明的膜状物。 (1) At 40°C, dissolve 0.6g of surfactant in 12g of solvent and mix uniformly, then add 1.8ml of organic titanium source and 1.5g of inorganic salt, stir and mix evenly, and then add 1.2g of mass percentage concentration It is a 20% ethanol solution of phenolic resin, and finally add 0.6g of organic silicon source, fully stir in a water bath at 40°C to form a homogeneous solution, then pour it into a watch glass, put it in a blast drying oven at 40°C for 24h, and then put it in 100°C The cross-linking was carried out in a forced air drying oven at ℃. Thus, a transparent film was obtained.
上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、质量百分比浓度为20%的酚醛树脂溶液的量,按质量比计算,表面活性剂:溶剂:有机钛源:无机盐:硅源:质量百分比浓度为20%的酚醛树脂溶液为1.0:20:3:2.5:2:1; The amount of the above-mentioned used surfactant, solvent, organic titanium source, inorganic salt, silicon source, and mass percent concentration of phenolic resin solution is 20%, calculated by mass ratio, surfactant: solvent: organic titanium source: inorganic salt: Silicon source: phenolic resin solution with a mass percent concentration of 20% is 1.0:20:3:2.5:2:1;
所述的表面活性剂为EO132PO60EO132; Described surfactant is EO 132 PO 60 EO 132 ;
所述溶剂为甲醇和水的混合物; The solvent is a mixture of methanol and water;
所述有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述无机盐为九水合硝酸铁; Described inorganic salt is ferric nitrate nonahydrate;
所述的有机硅源为正硅酸四甲酯; Described organosilicon source is tetramethyl orthosilicate;
(2)、将步骤1中得到的透明膜状物刮下,在管式炉中在氮气保护下先按速率1℃/min从室温升到300℃,焙烧两个小时,再按速率为5℃/min升至800℃进行焙烧2h,然后自然冷却到室温,即得到TiN/SiO2/Fe/C的复合物。 (2) Scrape off the transparent membrane obtained in step 1, and raise it from room temperature to 300°C at a rate of 1°C/min in a tube furnace under the protection of nitrogen, bake it for two hours, and then press the rate of 5°C/min was raised to 800°C for 2h, and then naturally cooled to room temperature to obtain a TiN/SiO 2 /Fe/C composite.
(3)、将步骤(2)得到的TiN/SiO2/Fe/C复合物加入到0.5mol/L的氢氧化钠溶液20ml中,40℃水浴搅拌30min,然后离心水洗,洗到流出液为中性;;然后继续用2MHCl20ml40℃水浴搅拌10~40min,离心水洗;自然干燥,得到TiN/C复合纳米材料。 (3) Add the TiN/SiO 2 /Fe/C composite obtained in step (2) into 20ml of 0.5mol/L sodium hydroxide solution, stir in a water bath at 40°C for 30min, then wash with centrifuge until the effluent is Neutral; Then continue to stir with 2M HCl20ml 40 ℃ water bath for 10~40min, centrifuge and wash with water; dry naturally to obtain TiN/C composite nanomaterials.
(4)、将步骤(3)中的得到的TiN/C复合纳米材料在马弗炉中在450℃下焙烧10h除去碳,然后就得到了纯的氮化钛。 (4) Calcining the TiN/C composite nanomaterial obtained in step (3) in a muffle furnace at 450° C. for 10 h to remove carbon, and then obtain pure titanium nitride.
采用比表面积及孔隙度分析仪器,按照氮气吸脱附方法对上述步骤(3)所得的氮化钛纳米材料进行测定,所得的氮气吸附-脱附结果测的材料的比表面积为70m2/g,孔容为0.27cm3/g,孔径为7.6nm。 Using a specific surface area and porosity analysis instrument, the titanium nitride nanomaterial obtained in the above step (3) is measured according to the nitrogen adsorption-desorption method, and the specific surface area of the material measured by the obtained nitrogen adsorption-desorption result is 70m 2 /g , the pore volume is 0.27cm 3 /g, and the pore diameter is 7.6nm.
实施例3 Example 3
一种在较低温度下TiN纳米材料的制备方法,其特征在于包括以下步骤: A kind of preparation method of TiN nanometer material under lower temperature, it is characterized in that comprising the following steps:
(1)、在40℃下,将1g表面活性剂溶于30g溶剂中混合均匀的溶液中,然后加入5ml有机钛源和4g无机盐,搅拌混合均匀,之后加入4g质量百分比浓度为20%的酚醛树脂乙醇溶液,最后加入3g有机硅源,在40℃水浴下充分搅拌形成均相溶液,随后倒入表面皿中,放在40℃鼓风干燥箱24h,然后放到100℃鼓风干燥箱中进行交联。从而得到透明的膜状物。 (1) At 40°C, dissolve 1g of surfactant in 30g of solvent and mix uniformly, then add 5ml of organic titanium source and 4g of inorganic salt, stir and mix evenly, and then add 4g of 20% by mass concentration Phenolic resin ethanol solution, finally add 3g of organic silicon source, fully stir in a 40°C water bath to form a homogeneous solution, then pour it into a watch glass, put it in a blast drying oven at 40°C for 24 hours, and then put it in a blast drying oven at 100°C in cross-linking. Thus, a transparent film was obtained.
上述所用的表面活性剂、溶剂、有机钛源、无机盐、硅源、质量百分比浓度为20%的酚醛树脂溶液的量,按质量比计算,表面活性剂:溶剂:有机钛源:无机盐:硅源:质量百分比浓度为20%的酚醛树脂溶液为1.0:30:5:4:4:3; The amount of the above-mentioned used surfactant, solvent, organic titanium source, inorganic salt, silicon source, and mass percent concentration of phenolic resin solution is 20%, calculated by mass ratio, surfactant: solvent: organic titanium source: inorganic salt: Silicon source: phenolic resin solution with a mass percent concentration of 20% is 1.0:30:5:4:4:3;
所述的表面活性剂为EO106PO70EO106; Described surfactant is EO 106 PO 70 EO 106 ;
所述溶剂为乙二醇和水的混合物; Described solvent is the mixture of ethylene glycol and water;
所述有机钛源为柠檬酸钛; The organic titanium source is titanium citrate;
所述无机盐为六水合硝酸钴; The inorganic salt is cobalt nitrate hexahydrate;
所述的有机硅源为正硅酸四丙酯; Described organosilicon source is tetrapropyl orthosilicate;
(2)、将步骤1中得到的透明膜状物刮下,在管式炉中在氮气保护下先按速率1℃/min从室温升到300℃,焙烧两个小时,再按速率为5℃/min升至900℃进行焙烧2h,然后自然冷却到室温,即得到TiN/SiO2/Co/C的复合物。 (2) Scrape off the transparent membrane obtained in step 1, and raise it from room temperature to 300°C at a rate of 1°C/min in a tube furnace under the protection of nitrogen, bake it for two hours, and then press the rate of Rising to 900°C at 5°C/min for 2h calcination, and then naturally cooling to room temperature to obtain a TiN/SiO 2 /Co/C composite.
(3)、将步骤(2)得到的TiN/SiO2/Co/C复合物加入到2mol/L的氢氧化钠溶液20ml中,40℃水浴搅拌30min,然后离心水洗,洗到流出液为中性;然后继续用2MHCl20ml40℃水浴搅拌10~40min,离心水洗;自然干燥,得到TiN/C复合纳米材料。 (3) Add the TiN/SiO 2 /Co/C complex obtained in step (2) into 20ml of 2mol/L sodium hydroxide solution, stir in a water bath at 40°C for 30min, then wash with centrifuge until the effluent is medium Then continue to stir with 2MHCl20ml40℃ water bath for 10~40min, centrifuge and wash with water; dry naturally to obtain TiN/C composite nanomaterials.
(4)、将步骤(3)中的得到的TiN/C复合纳米材料在马弗炉中在500℃下焙烧8h除去碳,然后就得到了纯的氮化钛。 (4) The TiN/C composite nanomaterial obtained in step (3) was calcined in a muffle furnace at 500° C. for 8 hours to remove carbon, and then pure titanium nitride was obtained.
采用比表面积及孔隙度分析仪器,按照氮气吸脱附方法对上述步骤(3)所得的氮化钛纳米材料进行测定,所得的氮气吸附-脱附结果测的材料的比表面积为120m2/g,孔容为0.42cm3/g,孔径为9.1nm。 Using a specific surface area and porosity analysis instrument, the titanium nitride nanomaterial obtained in the above step (3) is measured according to the nitrogen adsorption-desorption method, and the specific surface area of the material measured by the obtained nitrogen adsorption-desorption result is 120m 2 /g , the pore volume is 0.42cm 3 /g, and the pore diameter is 9.1nm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510489657.3A CN105152146A (en) | 2015-08-11 | 2015-08-11 | Preparation method of TiN nano-material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510489657.3A CN105152146A (en) | 2015-08-11 | 2015-08-11 | Preparation method of TiN nano-material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105152146A true CN105152146A (en) | 2015-12-16 |
Family
ID=54793276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510489657.3A Pending CN105152146A (en) | 2015-08-11 | 2015-08-11 | Preparation method of TiN nano-material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105152146A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106865510A (en) * | 2016-12-22 | 2017-06-20 | 南昌航空大学 | A kind of preparation method of hollow titanium nitride |
CN109095445A (en) * | 2018-10-30 | 2018-12-28 | 合肥昂途纳米新材料有限公司 | A kind of preparation method of hollow out nanobelt, hollow out nanobelt and application |
CN109904453A (en) * | 2019-01-14 | 2019-06-18 | 浙江大学 | A kind of porous titanium nitride microsphere and its preparation method and application in lithium-sulfur battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104167303A (en) * | 2014-07-29 | 2014-11-26 | 上海应用技术学院 | Mesopore vanadium oxide/carbon composite nano material and preparation method thereof |
CN104183392A (en) * | 2014-07-29 | 2014-12-03 | 上海应用技术学院 | Mesoporous nickel oxide and carbon composite nano-material and preparation method thereof |
CN104192820A (en) * | 2014-07-14 | 2014-12-10 | 上海应用技术学院 | Mesoporous carbon sphere/manganese dioxide composite nano material and preparation method thereof |
-
2015
- 2015-08-11 CN CN201510489657.3A patent/CN105152146A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104192820A (en) * | 2014-07-14 | 2014-12-10 | 上海应用技术学院 | Mesoporous carbon sphere/manganese dioxide composite nano material and preparation method thereof |
CN104167303A (en) * | 2014-07-29 | 2014-11-26 | 上海应用技术学院 | Mesopore vanadium oxide/carbon composite nano material and preparation method thereof |
CN104183392A (en) * | 2014-07-29 | 2014-12-03 | 上海应用技术学院 | Mesoporous nickel oxide and carbon composite nano-material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
王涛等: "有序介孔C/NiO复合材料的合成及其电化学性能", 《物理化学学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106865510A (en) * | 2016-12-22 | 2017-06-20 | 南昌航空大学 | A kind of preparation method of hollow titanium nitride |
CN106865510B (en) * | 2016-12-22 | 2019-04-30 | 南昌航空大学 | A kind of preparation method of hollow titanium nitride |
CN109095445A (en) * | 2018-10-30 | 2018-12-28 | 合肥昂途纳米新材料有限公司 | A kind of preparation method of hollow out nanobelt, hollow out nanobelt and application |
CN109095445B (en) * | 2018-10-30 | 2021-11-19 | 合肥昂途纳米新材料有限公司 | Preparation method of hollowed-out nanobelt, hollowed-out nanobelt and application |
CN109904453A (en) * | 2019-01-14 | 2019-06-18 | 浙江大学 | A kind of porous titanium nitride microsphere and its preparation method and application in lithium-sulfur battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106549163B (en) | A kind of preparation method and application of cobalt and nitrogen co-doped ultra-thin carbon nanosheets | |
CN102115069B (en) | Graphene with porous structure and preparation method of graphene | |
KR101609803B1 (en) | PROCESS FOR THE COMPREHENSIVE RECOVERY OF METAL COBALT, RUTHENIUM AND ALUMINUM FROM WASTE CATALYST Co-Ru/Al2O3 IN FISCHER-TROPSCH SYNTHESIS | |
WO2019113993A1 (en) | Carbon nanotube and method for fabrication thereof | |
CN104130004B (en) | The preparation method of the block porous aluminum oxide nano pottery of high strength | |
CN112705235B (en) | Carbon-coated nickel carbide nanocomposite and preparation method and application thereof | |
CN109243855B (en) | Preparation method and application of carbon nanotube/nickel composite material | |
CN105905935B (en) | The method that spray pyrolysis prepares large specific surface area earth-rare oxides or composite oxides | |
CN109192526A (en) | A kind of porous carbon/metal oxide sandwich and its preparation method and application | |
CN107935056B (en) | A kind of preparation method of porous cobalt titanate microrod and rGO composite gas sensing material with hexagonal prism | |
CN104129983B (en) | Preparation method of high-strength bulky porous magnesium-aluminum spinel nano-ceramics | |
CN113735125B (en) | Carbide derived carbon material and preparation method and application thereof | |
CN106976854B (en) | A kind of method of preparing carbon material | |
CN105152146A (en) | Preparation method of TiN nano-material | |
CN105521782A (en) | Preparation method of Cu nanoparticles-embedded ordered mesoporous carbon catalyst | |
CN104556166A (en) | A method for preparing MgO·Al2O3 ultrafine powder by sol-gel process | |
CN105460916B (en) | A kind of preparation method of the assembly mesoporous carbon fibre material of hollow Nano carbon ball | |
CN108273488A (en) | A kind of preparation method of nano-sheet ceria/porous carbon composite material | |
CN103443303B (en) | Method for recovering nickel from raw material containing nickel | |
CN104402067A (en) | Method for preparing mesoporous metal oxide with large specific surface area by virtue of direct thermal decomposition | |
CN104759284A (en) | Preparation method of porous carbon-supported nano ferric oxide | |
CN105161311A (en) | Method for preparing titanium nitride/carbon composite materials | |
CN112705237B (en) | Carbon-coated nickel carbide and nickel nanocomposite as well as preparation method and application thereof | |
CN112237900A (en) | Bentonite-loaded copper-magnesium-aluminum oxide nanocomposite and preparation method and application thereof | |
CN106395887B (en) | A kind of porous material and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151216 |