CN104722294A - 一种常压下Pt-TiO2纳米管制备技术 - Google Patents
一种常压下Pt-TiO2纳米管制备技术 Download PDFInfo
- Publication number
- CN104722294A CN104722294A CN201510081726.7A CN201510081726A CN104722294A CN 104722294 A CN104722294 A CN 104722294A CN 201510081726 A CN201510081726 A CN 201510081726A CN 104722294 A CN104722294 A CN 104722294A
- Authority
- CN
- China
- Prior art keywords
- room temperature
- precipitate
- distilled water
- beaker
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910021650 platinized titanium dioxide Inorganic materials 0.000 title description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 47
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002244 precipitate Substances 0.000 claims abstract description 17
- 239000012153 distilled water Substances 0.000 claims abstract description 15
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 13
- 239000004033 plastic Substances 0.000 claims abstract description 13
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 13
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 13
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000002105 nanoparticle Substances 0.000 claims abstract description 9
- 230000007935 neutral effect Effects 0.000 claims abstract description 6
- 239000000047 product Substances 0.000 claims abstract description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 5
- 238000012546 transfer Methods 0.000 claims abstract description 5
- 239000013049 sediment Substances 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 6
- 230000004927 fusion Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 239000002071 nanotube Substances 0.000 abstract description 21
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 17
- 239000002131 composite material Substances 0.000 description 13
- 229910010413 TiO 2 Inorganic materials 0.000 description 12
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 230000001699 photocatalysis Effects 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000011218 binary composite Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种常压下Pt-TiO2纳米管制备技术,步骤如下:将TiO2纳米粒子1份,NaOH8份和Pt3+0.1~0.5份置于坩埚内,充分混匀;将坩埚置于500~750℃的高温炉内熔融30分钟~60分钟后取出坩埚,然后冷却至室温形成碱熔熔块;将所述碱熔熔块放入聚四氟乙烯塑料烧杯里,加入适量的热蒸馏水溶解,蒸馏水加入量需保证溶液中NaOH的浓度不低于10mol/L;将烧杯盖上杯盖,置于干燥器内;将所述干燥器置于110~130℃烘箱内保温2~5天进行水热反应,得到沉淀物;取出烧杯冷却至室温,蒸馏水洗涤至近中性;用体积比为2%的HNO3洗涤三遍以上;将沉淀物转移至玻璃烧杯内,将内装沉淀物的玻璃烧杯置于高温炉内,以5℃/min的升温速度从室温升至500℃,煅烧2小时,冷却至室温,研磨所得沉淀物制得成品。本发明对纳米管的制作方法做出了改进和拓展。
Description
技术领域
本发明涉及纳米材料制备方法,特别涉及一种常压下Pt-TiO2纳米管制备技术。
背景技术
TiO2是一种重要的无机功能材料,因其具有活性高、稳定性好、无二次污染、对人体无害且价格便宜,在太阳能的储存与利用、光电转换、光致变色及光催化降解大气和水中的污染物等领域有广阔的应用。自1991年由Iijima发现碳纳米管以来,吸引了人们对纳米管材料研究的极大兴趣。TiO2纳米管作为TiO2纳米材料的一种存在形式。管状结构的二氧化钛因其长径比以及纳米尺度的中空孔道,如果能在管中装入更小的无机、有机、金属或磁性纳米粒子组装成复合纳米材料,则TiO2纳米管的光电性能和催化活性将得到大大的改善。管径小于10nm的开口、中空TiO2纳米管还往往表现出显著的尺寸效应,以及纳米管比纳米膜具有更大的比表面积,因而具有较高的吸附能力,大大改善TiO2的光电、电磁及催化性能,进一步拓宽其在传感器、储氢材料、太阳能利用、光催化剂等领域应用。
TiO2纳米管的制备方法,主要有水热法和阳极氧化法两种方法。操作简单、成本低廉的水热合成法是目前制备TiO2纳米管最普遍的方法之一。水热法是指在高温下将TiO2纳米颗粒与碱液(通常选用廉价的NaOH溶液)进行反应得到钛酸盐,再经过离子交换以及焙烧从而制备TiO2纳米管的方法。据现有的文献报道:采用温和的水热法制备TiO2纳米管的方法无外乎就是在高压釜内将TiO2纳米颗粒与NaOH的水溶液进行混合,恒温数天,洗涤并煅烧钛酸盐沉淀,最终制得TiO2纳米管。
Hong Rui Peng等采用锐钛矿相TiO2纳米粒子与NaOH水溶液在更高的水热处理温度(>190℃)下合成反应,经500℃高温煅烧一小时,制得管径5-15nm、长度可达几百纳米至几微米的束状结构TiO2纳米管。梁建等将一定浓度的NaOH水溶液50ml与市售的TiO2粉体颗粒按一定的比例混合搅拌后,得到的白色悬浊液装入聚四氟乙烯内衬的高压釜中,将高压釜放入加热炉后,升温至130℃,进行为期2~3天的恒温水热处理。白色沉淀物用去离子水洗涤至中性,粉体在60℃烘干,即得到TiO2纳米管。Ming-dengWei等将市售试剂Na2CO3和锐钛矿TiO2以1:3的比例进行混合,于1000℃高温融熔2h,融块被置于30ml高压釜内并在140~170℃保温5~18天。再经过滤、洗涤以及60℃下干燥4h后得到TiO2纳米管产品。
本人使用碱熔-水热法,将AgNO3引入TiO2纳米管,制备了复合Ag-TiO2纳米管材料,并对其形貌和性能进行了研究。本人于专利CN 101564688 B中公开了一种Ag-TiO2纳米管的制作方法,为了更进一步拓展该工艺用于其它材料的制备中,本人提出了更为详细的制备方案,以获取Pt-TiO2纳米管复合材料。
发明内容
针对上述现状,本发明经过进一步的研究,发明了一种Pt-TiO2纳米管的制作方法,对本人专利CN 101564688 B中的方法做出了改进和拓展应用。
本发明所述的TiO2纳米管是指一种主要有TiO2组成,具有二维结构的纳米尺寸物质。如果有除去TiO2以外其它物质构成其主要成分,称为复合纳米管。
碱熔是指在较高或高温的温度下,以碱性物质为熔剂,熔解熔质的一种操作。一般选用NaOH、NaCO3等为熔剂。熔质在该条件下通常形成碱性物质,遇水溶剂作用,形成氧化物、氢氧化物或碳酸盐沉淀。
水热法是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应
掺杂指在一种材料(基质)中,掺入少量一种或多种其他元素或化合物,以使材料(基质)产生特定的电学、磁学和光学性能,从而具有实际应用价值或特定用途的过程称为掺杂。本申请书中提及的金属元素Pt即为用于提高TiO2纳米管特性的掺杂元素。
为实现上述目的本发明的技术方案是:
一种常压下Pt-TiO2纳米管制备技术,包括如下步骤:
一种常压下Pt-TiO2纳米管制备技术,其特征在于,包括如下步骤:
步骤一)常压下,将TiO2纳米粒子1份,NaOH8份和Pt3+0.1~0.5份置于坩埚内,充分混匀;
步骤二)将坩埚置于500~750℃的高温炉内熔融30分钟~60分钟后取出坩埚,然后冷却至室温形成碱熔熔块;
步骤三)将所述碱熔熔块放入聚四氟乙烯塑料烧杯里,加入适量的热蒸馏水溶解,蒸馏水加入量需保证溶液中NaOH的浓度不低于10mol/L;
步骤四)将聚四氟乙烯塑料烧杯盖上杯盖,置于干燥器内;
步骤五)将所述干燥器置于110~130℃烘箱内保温2~5天进行水热反应,得到沉淀物;
步骤六)取出聚四氟乙烯塑料烧杯冷却至室温,蒸馏水洗涤沉淀物至近中性;
步骤七)用体积比为2%的HNO3洗涤沉淀物三遍以上;
步骤八)将沉淀物转移至玻璃烧杯内,将内装沉淀物的玻璃烧杯置于高温炉内,以5℃/min的升温速度从室温升至500℃,煅烧2小时,冷却至室温,研磨所得沉淀物制得成品。
通过对本人专利CN 101564688 B的方法的改进,本发明提出一种较为优化、操作条件简便、材料制备效率更高以及性能优良可靠的复合Pt-TiO2纳米管材料制备方法及其先关的多元复合纳米管材料,对专利CN101564688 B的方法进行了改进和拓展应用。
在常压条件下制备复合纳米管与使用高压釜制备工艺相比,在相同的制备时间内,该工艺制备纳米管的长度大幅提高,将由几百纳米提高至几微米长度;制备相同长度纳米管,所需时间可以缩短近50%;贵金属Pt的加入时机以及添加量适宜,获得了性质稳定的复合纳米管,而且有效地提高该复合纳米材料的光催化特性不低于20%。由于在高温条件下(500~750℃)纳米颗粒TiO2与强碱已经形成钛酸盐,缩短了生成溶解性小的片状钛酸盐时间,与此同时加入掺杂元素Pt,形成钛酸铂的化合物,掺杂元素Pt参与TiO2纳米管的晶格构成。研究表明:在较低的水热反应温度110~130℃和较短的水热时间2~5天即可获得的二元复合Pt-TiO2纳米管或多元复合纳米管,并且其稳定性和化学特性如光催化性有所提高。
具体实施方式:
实施例1
一种常压下Pt-TiO2纳米管制备技术步骤如下:
步骤一)常压下,将TiO2纳米粒子1份,NaOH8份和Pt3+0.1份置于坩埚内,充分混匀;
步骤二)将坩埚置于750℃的高温炉内熔融20分钟后取出坩埚,然后冷却至室温形成碱熔熔块;
步骤三)将所述碱熔熔块放入聚四氟乙烯塑料烧杯里,加入适量的热蒸馏水溶解,蒸馏水加入量需保证溶液中NaOH的浓度不低于10mol/L;
步骤四)将聚四氟乙烯塑料烧杯盖上杯盖,置于干燥器内;
步骤五)将所述干燥器置于130℃烘箱内保温2天进行水热反应,得到沉淀物;
步骤六)取出聚四氟乙烯塑料烧杯冷却至室温,蒸馏水洗涤至近中性;
步骤七)用体积比为2%的HNO3洗涤三遍以上;
步骤八)将沉淀物转移至玻璃烧杯内,将内装沉淀物的玻璃烧杯置于高温炉内,以5℃/min的升温速度从室温升至500℃,煅烧2小时,冷却至室温,研磨所得沉淀物制得成品。
所述Pt3+也可在步骤五的水热反应中加入。
研究表明:本方法获得的二元复合Pt-TiO2纳米管其稳定性和化学特性如光催化性有所提高。可提高该复合纳米材料的光催化特性不低于20%。
实施例2
一种常压下Pt-TiO2纳米管制备技术步骤如下:
步骤一)常压下,将TiO2纳米粒子1份,NaOH 8份和Pt3+0.5份置于坩埚内,充分混匀;
步骤二)将坩埚置于500℃的高温炉内熔融60分钟后取出坩埚,然后冷却至室温形成碱熔熔块;
步骤三)将所述碱熔熔块放入聚四氟乙烯塑料烧杯里,加入适量的热蒸馏水溶解,蒸馏水加入量需保证溶液中NaOH的浓度不低于10mol/L;
步骤四)将聚四氟乙烯塑料烧杯盖上杯盖,置于干燥器内;
步骤五)将所述干燥器置于110℃烘箱内保温5天进行水热反应,得到沉淀物;
步骤六)取出聚四氟乙烯塑料烧杯冷却至室温,蒸馏水洗涤沉淀物至近中性;
步骤七)用体积比为2%的HNO3洗涤沉淀物三遍以上;
步骤八)将沉淀物转移至玻璃烧杯内,将内装沉淀物的玻璃烧杯置于高温炉内,以5℃/min的升温速度从室温升至500℃,煅烧2小时,冷却至室温,研磨所得沉淀物制得成品。
研究表明:本方法获得的多元复合Pt-TiO2纳米管其稳定性和化学特性如光催化性有所提高。可提高该复合纳米材料的光催化特性不低于20%。
以上所述实施例仅仅是本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。
Claims (1)
1.一种常压下Pt-TiO2纳米管制备技术,其特征在于,包括如下步骤:
步骤一)常压下,将TiO2纳米粒子1份,NaOH8份和Pt3+0.1~0.5份置于坩埚内,充分混匀;
步骤二)将坩埚置于500~750℃的高温炉内熔融30分钟~60分钟后取出坩埚,然后冷却至室温形成碱熔熔块;
步骤三)将所述碱熔熔块放入聚四氟乙烯塑料烧杯里,加入适量的热蒸馏水溶解,蒸馏水加入量需保证溶液中NaOH的浓度不低于10mol/L;
步骤四)将聚四氟乙烯塑料烧杯盖上杯盖,置于干燥器内;
步骤五)将所述干燥器置于110~130℃烘箱内保温2~5天进行水热反应,得到沉淀物;
步骤六)取出聚四氟乙烯塑料烧杯冷却至室温,蒸馏水洗涤沉淀物至近中性;
步骤七)用体积比为2%的HNO3洗涤沉淀物三遍以上;
步骤八)将沉淀物转移至玻璃烧杯内,将内装沉淀物的玻璃烧杯置于高温炉内,以5℃/min的升温速度从室温升至500℃,煅烧2小时,冷却至室温,研磨所得沉淀物制得成品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510081726.7A CN104722294A (zh) | 2015-02-15 | 2015-02-15 | 一种常压下Pt-TiO2纳米管制备技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510081726.7A CN104722294A (zh) | 2015-02-15 | 2015-02-15 | 一种常压下Pt-TiO2纳米管制备技术 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104722294A true CN104722294A (zh) | 2015-06-24 |
Family
ID=53447069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510081726.7A Pending CN104722294A (zh) | 2015-02-15 | 2015-02-15 | 一种常压下Pt-TiO2纳米管制备技术 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104722294A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106064085A (zh) * | 2016-06-14 | 2016-11-02 | 福建工程学院 | 一种多元复合Ag‑Pt‑TiO2纳米管制备技术 |
CN106861680A (zh) * | 2017-03-16 | 2017-06-20 | 福建工程学院 | 一种石墨烯‑Pt‑TiO2多元复合纳米管材料的制备方法 |
CN106914235A (zh) * | 2017-03-16 | 2017-07-04 | 福建工程学院 | 一种石墨烯‑Re‑TiO2多元复合纳米管材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238157A (ja) * | 2002-02-13 | 2003-08-27 | Toyota Motor Corp | チタニアナノチューブ |
CN101302036A (zh) * | 2008-07-03 | 2008-11-12 | 南开大学 | 一种掺杂二氧化钛纳米管的制备方法 |
CN101564688A (zh) * | 2009-02-24 | 2009-10-28 | 福建工程学院 | 一种二氧化钛纳米复合管的制备方法 |
-
2015
- 2015-02-15 CN CN201510081726.7A patent/CN104722294A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238157A (ja) * | 2002-02-13 | 2003-08-27 | Toyota Motor Corp | チタニアナノチューブ |
CN101302036A (zh) * | 2008-07-03 | 2008-11-12 | 南开大学 | 一种掺杂二氧化钛纳米管的制备方法 |
CN101564688A (zh) * | 2009-02-24 | 2009-10-28 | 福建工程学院 | 一种二氧化钛纳米复合管的制备方法 |
Non-Patent Citations (2)
Title |
---|
LI JINGLING等: "synthesis of Ag-TiO2 nanotubes in ambient atmosphere and kinetics of photocatalytic reaction", 《传感技术学报》 * |
包华辉等: ""TiO2纳米管负载Ag、Au、Pt纳米粒子的微波合成与表征", 《无机化学学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106064085A (zh) * | 2016-06-14 | 2016-11-02 | 福建工程学院 | 一种多元复合Ag‑Pt‑TiO2纳米管制备技术 |
CN106861680A (zh) * | 2017-03-16 | 2017-06-20 | 福建工程学院 | 一种石墨烯‑Pt‑TiO2多元复合纳米管材料的制备方法 |
CN106914235A (zh) * | 2017-03-16 | 2017-07-04 | 福建工程学院 | 一种石墨烯‑Re‑TiO2多元复合纳米管材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101564688B (zh) | 一种二氧化钛纳米复合管的制备方法 | |
Pan et al. | Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis | |
Mao et al. | Size-and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures | |
Sun et al. | Efficient methylene blue removal over hydrothermally synthesized starlike BiVO4 | |
CN100406117C (zh) | 一种磁性光催化剂及其制备方法 | |
CN104148047B (zh) | 一种碳掺杂氧化锌基可见光催化剂的宏量制备方法 | |
CN104289240B (zh) | 一种Ag3PO4/BiVO4异质结复合光催化剂的制备方法 | |
CN101381106A (zh) | 制备纳米三氧化钨粉末的方法 | |
CN106268900A (zh) | 一种g‑C3N4量子点敏化AgVO3纳米线的制备方法 | |
Mandal et al. | Sustainable design of hierarchically porous Ag3PO4 microspheres through a novel natural template and their superior photooxidative capacity | |
Daoud et al. | Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions | |
CN107352519B (zh) | 一种c3n4纳米线的制备方法 | |
CN107983336A (zh) | 一种镨掺杂钨酸铋光催剂及其制备方法 | |
CN104722294A (zh) | 一种常压下Pt-TiO2纳米管制备技术 | |
CN108298551B (zh) | 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法 | |
CN104689815A (zh) | 一种常压下Au-TiO2纳米管制备技术 | |
CN105016382A (zh) | 一种纯金红石型二氧化钛纳米棒的制备方法 | |
CN103657646A (zh) | 二氧化钛纳米管负载金纳米粒子的方法 | |
CN106861688A (zh) | 一种石墨烯‑Au‑TiO2多元复合纳米管材料的制备方法 | |
CN102815742B (zh) | 一种多孔氧化锌纳米粉体及其制备方法 | |
CN107628641A (zh) | 一种二氧化钛纳米线及其制备方法 | |
KR20090087731A (ko) | 질소 치환 티타니아 나노튜브 및 이의 제조방법 | |
CN103586015B (zh) | 一种正三棱锥状锗酸铋可见光催化剂的制备方法 | |
CN106564948B (zh) | 一种非水解溶胶‑凝胶辅助熔盐法制备颗粒状Bi2Zr2O7纳米材料的方法 | |
CN106914235A (zh) | 一种石墨烯‑Re‑TiO2多元复合纳米管材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150624 |