CN103721713B - A kind of three-phase composite visible of efficient degradation dyestuff - Google Patents
A kind of three-phase composite visible of efficient degradation dyestuff Download PDFInfo
- Publication number
- CN103721713B CN103721713B CN201410006052.XA CN201410006052A CN103721713B CN 103721713 B CN103721713 B CN 103721713B CN 201410006052 A CN201410006052 A CN 201410006052A CN 103721713 B CN103721713 B CN 103721713B
- Authority
- CN
- China
- Prior art keywords
- graphene
- reduced graphene
- moo
- phase composite
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 49
- 230000015556 catabolic process Effects 0.000 title claims description 4
- 238000006731 degradation reaction Methods 0.000 title claims description 4
- 239000000975 dye Substances 0.000 title description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 92
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 83
- 238000002360 preparation method Methods 0.000 claims abstract description 22
- 239000003054 catalyst Substances 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 229910052737 gold Inorganic materials 0.000 claims description 33
- 238000003756 stirring Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- -1 stir Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002957 persistent organic pollutant Substances 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 8
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 claims description 7
- 229930003268 Vitamin C Natural products 0.000 claims description 7
- 235000019154 vitamin C Nutrition 0.000 claims description 7
- 239000011718 vitamin C Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 239000012213 gelatinous substance Substances 0.000 claims description 5
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- 239000005457 ice water Substances 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 239000012286 potassium permanganate Substances 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000004729 solvothermal method Methods 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims 5
- 238000005119 centrifugation Methods 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 6
- 230000001699 photocatalysis Effects 0.000 abstract description 6
- 239000005416 organic matter Substances 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000007146 photocatalysis Methods 0.000 abstract 1
- 239000002904 solvent Substances 0.000 abstract 1
- DKUYEPUUXLQPPX-UHFFFAOYSA-N dibismuth;molybdenum;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mo].[Mo].[Bi+3].[Bi+3] DKUYEPUUXLQPPX-UHFFFAOYSA-N 0.000 description 41
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 32
- 239000010931 gold Substances 0.000 description 32
- 239000011941 photocatalyst Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000011068 loading method Methods 0.000 description 6
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 6
- 229940043267 rhodamine b Drugs 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000000593 degrading effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 235000015110 jellies Nutrition 0.000 description 3
- 239000008274 jelly Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003933 environmental pollution control Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000011954 pollution control method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明属于材料制备及环境污染治理的技术领域,具体涉及一种高效降解染料有机污染物的三相复合可见光催化剂及其制备方法。 The invention belongs to the technical field of material preparation and environmental pollution control, and specifically relates to a three-phase composite visible light catalyst for efficiently degrading dye organic pollutants and a preparation method thereof.
背景技术 Background technique
随着染料合成、印染等工业废水的不断排放和各种染料的不断使用,进入环境的染料数量和种类不断增加,染料造成的环境污染日趋严重。据统计,全世界大约15%的染料在生产过程中被排放到废水中,而这些有色废水在环境中又会通过氧化、水解以及其它化学反应生成有毒的副产物。目前传统的污染治理手段(物理处理、生物处理、常规化学处理)不能彻底消除,因此发展一种绿色、无污染的处理手段势在必行。 With the continuous discharge of industrial wastewater such as dye synthesis, printing and dyeing and the continuous use of various dyes, the number and types of dyes entering the environment are increasing, and the environmental pollution caused by dyes is becoming more and more serious. According to statistics, about 15% of dyes in the world are discharged into wastewater during the production process, and these colored wastewater will generate toxic by-products through oxidation, hydrolysis and other chemical reactions in the environment. At present, traditional pollution control methods (physical treatment, biological treatment, conventional chemical treatment) cannot be completely eliminated, so it is imperative to develop a green and pollution-free treatment method.
光催化技术是一种高级氧化技术,其原理是光催化剂如二氧化钛(TiO2)在紫外光的作用下,产生空穴和电子,并进一步通过化学作用产生具有高活性的各种自由基等一些高活性基团,参与氧化还原反应降解污染物。这种技术对有机物具有很强的矿化能力,从而使有毒的有机物完全矿化成无机物或转化为无污染的产物。目前,TiO2光催化技术在环境保护中的应用已有相关报道。然而,普遍使用的TiO2基光催化剂存在量子效率低和太阳能利用率低的弊端。针对这些问题,研究者们对TiO2进行了大量的改性研究包括各种金属和非金属元素掺杂、贵金属表面沉积、半导体复合、染料敏化等,取得了一定的进展,但是仍未从根本上解决量子效率和太阳能利用率这两个重大问题,因而促使研究者们进一步将视线转向非TiO2系列的化合物,尝试开发新型高效的光催化剂和拓宽光催化剂的响应范围。 Photocatalytic technology is an advanced oxidation technology. Its principle is that photocatalysts such as titanium dioxide (TiO 2 ) generate holes and electrons under the action of ultraviolet light, and further produce various free radicals with high activity through chemical action. Highly active groups, participating in redox reactions to degrade pollutants. This technology has a strong mineralization ability for organic matter, so that toxic organic matter can be completely mineralized into inorganic matter or converted into non-polluting products. At present, the application of TiO 2 photocatalytic technology in environmental protection has been reported. However, the commonly used TiO2 -based photocatalysts suffer from low quantum efficiency and low solar energy utilization. In response to these problems, researchers have carried out a lot of research on the modification of TiO2 , including various metal and non-metal element doping, noble metal surface deposition, semiconductor recombination, dye sensitization, etc., and some progress has been made, but it has not yet been studied. Fundamentally solve the two major problems of quantum efficiency and solar energy utilization, thus prompting researchers to further turn their attention to non-TiO 2 series compounds, trying to develop new and efficient photocatalysts and broaden the response range of photocatalysts.
我们在前期工作中报道了可见光照射下,钼酸铋能够降解水中的染料有机物,但是钼酸铋光催化剂量子效率低,而且光生电子和空穴容易复合,造成钼酸铋的光催化性能较低。针对催化剂光生载流子易复合的问题,一般是采用对催化剂进行改性,以此来抑制光生电子空穴的复合。在众多的改性方法中,构建复合光催化剂已被证明是提高催化剂光催化降解有机污染物的有效途径。在复合光催化剂中,复合的半导体光催化剂或者金属之间的界面导致更加有效的界面电子转移,从而使光生载流子有效分离。目前为止,已经报道的钼酸铋基复合光催化剂主要有Bi2MoO6/TiO2、Bi2MoO6/C、Ag/AgBr/Bi2MoO6、石墨烯/Bi2MoO6等,均有效提高了钼酸铋光催化降解有机污染物的活性。其中,复合剂石墨烯是一种优越的助催化剂,它是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于石墨烯是石墨的层状结构,在其表面上有大量未成对的电子游动,这使石墨烯既有金属的导电性又有半导体的性能,而且碳纳米管还具有大的比表面积易于吸附有机物,这些因素理论上都有助于以电子传递为主的界面光催化反应,石墨烯的加入有利于抑制光生电子-空穴对的复合,提高催化剂的光催化活性。Yuetal.构建了Bi2MoO6-RGO纳米复合物,提高了钼酸铋光催化剂的杀菌性能,但是其活性还是有待提高,近几年,关于三相复合光催化剂的研究表明,三相复合物光催化剂表现出比二相复合物更高的催化活性,究其原因为三相复合光催化剂能够更好的抑制光生电子空穴的复合,从而大大提高光催化剂光催化降解有机污染物的性能。众多研究表明,在催化剂表面负载纳米金颗粒能有效提高光催化性能,纳米金颗粒能充当电子传输轨道,从而提高催化剂表面的光生电子-空穴对的分离率,使催化剂的活性大大提高。基于此,在石墨烯/钼酸铋两相复合物的基础上进一步负载纳米金颗粒形成三相复合物,用来降解染料有机污染物,这对推广钼酸铋在降解染料有机物废水中的应用具有较大意义。 In our previous work, we reported that bismuth molybdate can degrade organic dyes in water under visible light irradiation, but the photocatalyst quantum efficiency of bismuth molybdate is low, and photogenerated electrons and holes are easy to recombine, resulting in low photocatalytic performance of bismuth molybdate . Aiming at the problem that the photogenerated carriers of the catalyst are easy to recombine, the catalyst is generally modified to suppress the recombination of the photogenerated electron holes. Among the numerous modification methods, constructing composite photocatalysts has been proved to be an effective way to improve the photocatalytic degradation of organic pollutants. In composite photocatalysts, the interface between composite semiconductor photocatalysts or metals leads to more efficient interfacial electron transfer, resulting in efficient separation of photogenerated carriers. So far, the bismuth molybdate-based composite photocatalysts that have been reported mainly include Bi 2 MoO 6 /TiO 2 , Bi 2 MoO 6 /C, Ag/AgBr/Bi 2 MoO 6 , graphene/Bi 2 MoO 6 , etc., all of which are effective The activity of bismuth molybdate photocatalytic degradation of organic pollutants was improved. Among them, the composite agent graphene is a superior co-catalyst, which is a nano-material with a two-dimensional honeycomb lattice structure closely arranged by a single layer of carbon atoms. Since graphene is a layered structure of graphite, in its There are a large number of unpaired electrons swimming on the surface, which makes graphene not only have the conductivity of metal but also the performance of semiconductor, and carbon nanotubes also have a large specific surface area and are easy to adsorb organic substances. For interfacial photocatalytic reactions dominated by electron transfer, the addition of graphene is beneficial to inhibit the recombination of photogenerated electron-hole pairs and improve the photocatalytic activity of the catalyst. Yuetal. Constructed Bi 2 MoO 6 -RGO nanocomposites, which improved the bactericidal performance of bismuth molybdate photocatalysts, but its activity still needs to be improved. In recent years, studies on three-phase composite photocatalysts have shown that three-phase composites The photocatalyst exhibits higher catalytic activity than the two-phase composite, and the reason is that the three-phase composite photocatalyst can better inhibit the recombination of photogenerated electron holes, thereby greatly improving the performance of the photocatalyst for photocatalytic degradation of organic pollutants. Numerous studies have shown that loading gold nanoparticles on the surface of catalysts can effectively improve the photocatalytic performance. Gold nanoparticles can act as electron transport orbits, thereby improving the separation rate of photogenerated electron-hole pairs on the catalyst surface and greatly improving the activity of the catalyst. Based on this, on the basis of the graphene/bismuth molybdate two-phase composite, gold nanoparticles are further loaded to form a three-phase composite, which is used to degrade dye organic pollutants, which is beneficial to the promotion of bismuth molybdate in the degradation of organic dye wastewater has greater significance.
发明内容 Contents of the invention
本发明的目的在于提供一种高效降解染料有机污染物的三相复合可见光催化剂及其制备方法。该光催化剂比表面积大,活性组分利用高,能够实现高效降解废水中的染料有机污染物,有较大的应用潜力。 The object of the present invention is to provide a three-phase composite visible light catalyst for efficiently degrading dye organic pollutants and a preparation method thereof. The photocatalyst has a large specific surface area, high utilization of active components, can realize efficient degradation of dye organic pollutants in wastewater, and has great application potential.
为实现上述目的,本发明采用如下技术方案: To achieve the above object, the present invention adopts the following technical solutions:
本发明采用溶剂热法和浸渍-还原法分别将还原石墨烯和金负载于钼酸铋表面,进而合成还原石墨烯/钼酸铋/金三相复合的高效可见光催化剂,其中还原石墨烯和金的质量浓度均为0.1%-0.4%。 The present invention adopts solvothermal method and impregnation-reduction method to respectively load reduced graphene and gold on the surface of bismuth molybdate, and then synthesize a highly efficient visible light catalyst of reduced graphene/bismuth molybdate/gold three-phase composite, wherein reduced graphene and gold The mass concentration is 0.1%-0.4%.
所述的制备方法的具体步骤为:(1)还原石墨烯的制备:分别称取3g石墨和18g高锰酸钾,研磨混匀后,加入到浓硫酸(360ml)和磷酸(40ml)中形成悬浮液,将悬浮液在50℃下保温12h后,冷却至室温,倒入到400mL冰水中,搅拌均匀后,滴加30wt.%的H2O2直至呈金黄色,继续搅拌至无泡后,离心,取沉淀物,分别用10wt.%HCl溶液和去离子水洗涤,直至出现胶状物质无法离心为止。取出胶状物质,通过透析使胶溶液的离子浓度小于5ppm。将胶状物用去离子水稀释至所需浓度后,利用超声作用将氧化石墨剥离,得到氧化石墨烯。取适量的上述氧化石墨烯,加入一定量的维生素C(VC)溶液,搅拌,将其在95℃下保温50min后,得还原石墨烯;(2)石墨烯/钼酸铋两相复合物的制备:将一定量的还原石墨烯分别加入到聚四氟乙烯反应釜中,搅拌,分别滴入Bi(NO3)3·5H2O(0.27M)与Na2MoO4·2H2O(0.13M)的乙二醇溶液,10min后,滴加NaOH(10M)溶液,调节pH值约为9,继续搅拌30min后,取下反应釜放入不锈钢外衬中,在160℃的烘箱中反应3h,待反应釜冷却至室温后,将内衬中的混合物进行离心分离,所得的沉淀先后用蒸馏水和无水乙醇洗涤,在烘箱中80℃烘干后研磨备用;(3)石墨烯/钼酸铋/金三相复合物的制备:称取一定量已制备的石墨烯/钼酸铋复合物,放入烧杯,加入适量去离子水,搅拌,分别滴入不同体积氯金酸溶液(10mg/mL),搅拌一个小时,在紫外光灯下照射4h,离心,烘干,得石墨烯/钼酸铋/金三相复合化合物。 The specific steps of the preparation method are: (1) Preparation of reduced graphene: Weigh 3g of graphite and 18g of potassium permanganate respectively, grind and mix them, and add them to concentrated sulfuric acid (360ml) and phosphoric acid (40ml) to form Suspension, keep the suspension at 50°C for 12h, cool to room temperature, pour into 400mL ice water, stir well, add 30wt.% H 2 O 2 dropwise until golden yellow, continue stirring until no bubbles , Centrifuge, take the precipitate, wash with 10wt.% HCl solution and deionized water, respectively, until gelatinous substances appear and cannot be centrifuged. Take out the colloidal substance, and make the ion concentration of the colloidal solution less than 5ppm by dialysis. After diluting the jelly with deionized water to the desired concentration, the graphite oxide is peeled off by ultrasonic action to obtain graphene oxide. Take an appropriate amount of the above-mentioned graphene oxide, add a certain amount of vitamin C (VC) solution, stir, and keep it at 95°C for 50 minutes to obtain reduced graphene; (2) graphene/bismuth molybdate two-phase composite Preparation: Add a certain amount of reduced graphene into a polytetrafluoroethylene reactor, stir, and drop Bi(NO 3 ) 3 ·5H 2 O (0.27M) and Na 2 MoO 4 ·2H 2 O (0.13 M) ethylene glycol solution, after 10 minutes, add NaOH (10M) solution dropwise, adjust the pH value to about 9, continue stirring for 30 minutes, remove the reaction kettle and put it in a stainless steel outer lining, and react in an oven at 160°C for 3 hours , after the reaction kettle is cooled to room temperature, the mixture in the lining is centrifuged, and the obtained precipitate is washed with distilled water and absolute ethanol successively, dried in an oven at 80°C and ground for later use; (3) Graphene/molybdic acid Preparation of bismuth/gold three-phase composite: Weigh a certain amount of prepared graphene/bismuth molybdate composite, put it into a beaker, add an appropriate amount of deionized water, stir, and drop into different volumes of chloroauric acid solution (10mg/ mL), stirred for one hour, irradiated under ultraviolet light for 4h, centrifuged, and dried to obtain a graphene/bismuth molybdate/gold three-phase composite compound.
本发明的显著优点在于: Significant advantage of the present invention is:
(1)本发明首次将还原石墨烯和金负载于钼酸铋上,有效地分离了光生电子和空穴,是一种新型可见光响应的催化剂。 (1) The present invention supports reduced graphene and gold on bismuth molybdate for the first time, effectively separating photogenerated electrons and holes, and is a new type of visible light-responsive catalyst.
(2)还原石墨烯/钼酸铋/金三相复合的可见光催化剂能高效地降解罗丹明B等有机污染物。 (2) The reduced graphene/bismuth molybdate/gold three-phase composite visible light catalyst can efficiently degrade organic pollutants such as rhodamine B.
附图说明 Description of drawings
图1为实施例2、4、5和6所得的石墨烯/钼酸铋/金三相复合光催化剂的粉末XRD图。 Fig. 1 is the powder XRD figure of the graphene/bismuth molybdate/gold three-phase composite photocatalyst obtained in embodiment 2, 4, 5 and 6.
图2为实施例6所得的石墨烯/钼酸铋/金三相复合光催化剂的粉末TEM图。 Figure 2 is a powder TEM image of the graphene/bismuth molybdate/gold three-phase composite photocatalyst obtained in Example 6.
图3为实施例2、4、5和6所得的石墨烯/钼酸铋/金三相复合光催化剂降解罗丹明B的效果图。具体实施方式 Fig. 3 is the graphene/bismuth molybdate/gold three-phase composite photocatalyst degrading effect figure of rhodamine B obtained in embodiment 2, 4, 5 and 6. detailed description
本发明的具体步骤为: Concrete steps of the present invention are:
(1)还原石墨烯的制备:分别称取3g石墨和18g高锰酸钾,研磨混匀后,加入到浓硫酸(360ml)和磷酸(40ml)中形成悬浮液,将悬浮液在50℃下保温12h后,冷却至室温,倒入到400mL冰水中,搅拌均匀后,滴加30%的H2O2直至呈金黄色,继续搅拌至无泡后,离心,取沉淀物,分别用10%HCl溶液和去离子水洗涤,直至出现胶状物质无法离心为止。取出胶状物质,通过透析使胶溶液的离子浓度小于5ppm。将胶状物用去离子水稀释至所需浓度后,利用超声作用将氧化石墨剥离,得到氧化石墨烯。取适量的上述氧化石墨烯,加入一定量的维生素C(VC)溶液,搅拌,将其在95℃下保温50min后,得还原石墨烯。 (1) Preparation of reduced graphene: Weigh 3g of graphite and 18g of potassium permanganate respectively, grind and mix well, then add to concentrated sulfuric acid (360ml) and phosphoric acid (40ml) to form a suspension, and put the suspension at 50°C After keeping warm for 12 hours, cool to room temperature, pour into 400mL ice water, stir evenly, add 30% H 2 O 2 dropwise until golden yellow, continue stirring until there is no bubble, centrifuge, take the precipitate, and use 10% Wash with HCl solution and deionized water until a gelatinous substance appears that cannot be centrifuged. Take out the colloidal substance, and make the ion concentration of the colloidal solution less than 5ppm by dialysis. After diluting the jelly with deionized water to the desired concentration, the graphite oxide is peeled off by ultrasonic action to obtain graphene oxide. Take an appropriate amount of the above-mentioned graphene oxide, add a certain amount of vitamin C (VC) solution, stir, and keep it at 95° C. for 50 minutes to obtain reduced graphene.
(2)石墨烯/钼酸铋两相复合物的制备:将0.1%-0.4%负载量的还原石墨烯分别加入到聚四氟乙烯反应釜中,搅拌,分别滴入Bi(NO3)3·5H2O(0.27M)与Na2MoO4·2H2O(0.13M)的乙二醇溶液,10min后,滴加NaOH(10M)溶液,调节pH值约为9,继续搅拌30min后,取下反应釜放入不锈钢外衬中,在160-180℃的烘箱中反应3-5h,待反应釜冷却至室温后,将内衬中的混合物进行离心分离,所得的沉淀先后用蒸馏水和无水乙醇洗涤,在烘箱中80℃烘干后研磨备用。 (2) Preparation of graphene/bismuth molybdate two-phase composites: 0.1%-0.4% of the reduced graphene load was added to the polytetrafluoroethylene reactor, stirred, and then dropped into Bi(NO 3 ) 3 5H 2 O (0.27M) and Na 2 MoO 4 ethylene glycol solution of 2H 2 O (0.13M), after 10 minutes, add NaOH (10M) solution dropwise, adjust the pH value to about 9, continue stirring for 30 minutes, Take off the reaction kettle and put it in the stainless steel outer lining, and react in an oven at 160-180°C for 3-5h. After the reaction kettle is cooled to room temperature, the mixture in the inner lining is centrifuged. Washed with water and ethanol, dried in an oven at 80°C, and ground for later use.
(3)石墨烯/钼酸铋/金三相复合物的制备:称取一定量已制备的石墨烯/钼酸铋复合物,放入烧杯,加入适量去离子水,搅拌,分别滴入不同体积氯金酸溶液(10mg/mL),搅拌1-2小时,在紫外光灯下照射2-4h,离心,烘干,得石墨烯/钼酸铋/金三相复合化合物。 (3) Preparation of graphene/bismuth molybdate/gold three-phase composite: Weigh a certain amount of prepared graphene/bismuth molybdate composite, put it into a beaker, add an appropriate amount of deionized water, stir, drop into different Volume chloroauric acid solution (10mg/mL), stirred for 1-2 hours, irradiated with ultraviolet light for 2-4 hours, centrifuged, and dried to obtain graphene/bismuth molybdate/gold three-phase composite compound.
以下是本发明的几个实施例,进一步说明本发明,但是本发明不仅限于此。 Below are several embodiments of the present invention to further illustrate the present invention, but the present invention is not limited thereto.
实施例1:还原石墨烯的制备Embodiment 1: the preparation of reduced graphene
分别称取3g石墨和18g高锰酸钾,研磨混匀后,加入到浓硫酸(360mL)和磷酸(40mL)中形成悬浮液,将悬浮液在50℃下保温12h后,冷却至室温,倒入到400mL冰水中,搅拌均匀后,滴加30%的H2O2直至呈金黄色,继续搅拌至无泡后,离心,取沉淀物,分别用10%HCl溶液和去离子水洗涤,直至出现胶状物质无法离心为止。取出胶状物质,通过透析使胶溶液的离子浓度小于5ppm。将胶状物用去离子水稀释至所需浓度后,利用超声作用将氧化石墨剥离,得到氧化石墨烯。取100mL上述氧化石墨烯,加入1mL0.1M维生素C(VC)溶液,搅拌,将其在95℃下保温50min后,得还原石墨烯。 Weigh 3g of graphite and 18g of potassium permanganate respectively, grind and mix well, add to concentrated sulfuric acid (360mL) and phosphoric acid (40mL) to form a suspension, keep the suspension at 50°C for 12h, cool to room temperature, pour Pour into 400mL ice water, stir evenly, add 30% H 2 O 2 dropwise until golden yellow, continue to stir until there is no bubble, centrifuge, take the precipitate, wash with 10% HCl solution and deionized water respectively, until A gelatinous substance appears and cannot be centrifuged. Take out the colloidal substance, and make the ion concentration of the colloidal solution less than 5ppm by dialysis. After diluting the jelly with deionized water to the desired concentration, the graphite oxide is peeled off by ultrasonic action to obtain graphene oxide. Take 100 mL of the above graphene oxide, add 1 mL of 0.1 M vitamin C (VC) solution, stir, and keep it at 95° C. for 50 min to obtain reduced graphene.
实施例2:石墨烯/钼酸铋两相复合物的制备Embodiment 2: the preparation of graphene/bismuth molybdate two-phase compound
取实施例1制得的还原石墨烯0.12mL加入到聚四氟乙烯反应釜中,搅拌,依次滴入15mLBi(NO3)3·5H2O(0.27M)与Na2MoO4·2H2O(0.13M)的乙二醇溶液,10min后,滴加NaOH(10M)溶液,调节pH值约为9,继续搅拌30min后,取下反应釜放入不锈钢外衬中,在160℃的烘箱中反应3h,待反应釜冷却至室温后,将内衬中的混合物进行离心分离,所得的沉淀先后用蒸馏水和无水乙醇洗涤,在烘箱中80℃烘干后研磨,得石墨烯负载量为0.1%的石墨烯/钼酸铋两相复合光催化剂。 Take 0.12mL of the reduced graphene prepared in Example 1 and put it into a polytetrafluoroethylene reactor, stir, and drop in 15mL of Bi(NO 3 ) 3 5H 2 O (0.27M) and Na 2 MoO 4 2H 2 O successively. (0.13M) ethylene glycol solution, after 10 minutes, add NaOH (10M) solution dropwise, adjust the pH value to about 9, continue to stir for 30 minutes, remove the reaction kettle and put it in a stainless steel outer lining, and put it in a 160°C oven After reacting for 3 hours, after the reactor was cooled to room temperature, the mixture in the lining was centrifuged, and the obtained precipitate was washed with distilled water and absolute ethanol successively, dried in an oven at 80°C and then ground to obtain a graphene loading capacity of 0.1 % graphene/bismuth molybdate two-phase composite photocatalyst.
实施例3:石墨烯/钼酸铋两相复合物的制备Embodiment 3: the preparation of graphene/bismuth molybdate two-phase compound
取实施例1制得的还原石墨烯0.24mL加入到聚四氟乙烯反应釜中,搅拌,依次滴入15mLBi(NO3)3·5H2O(0.27M)与Na2MoO4·2H2O(0.13M)的乙二醇溶液,10min后,滴加NaOH(10M)溶液,调节pH值约为9,继续搅拌30min后,取下反应釜放入不锈钢外衬中,在160℃的烘箱中反应3h,待反应釜冷却至室温后,将内衬中的混合物进行离心分离,所得的沉淀先后用蒸馏水和无水乙醇洗涤,在烘箱中80℃烘干后研磨,得石墨烯负载量为0.2%的石墨烯/钼酸铋两相复合光催化剂。 Take 0.24mL of the reduced graphene prepared in Example 1 and put it into a polytetrafluoroethylene reactor, stir, and drop in 15mL of Bi(NO 3 ) 3 5H 2 O (0.27M) and Na 2 MoO 4 2H 2 O successively. (0.13M) ethylene glycol solution, after 10 minutes, add NaOH (10M) solution dropwise, adjust the pH value to about 9, continue to stir for 30 minutes, remove the reaction kettle and put it in a stainless steel outer lining, and put it in a 160°C oven After reacting for 3 hours, after the reactor was cooled to room temperature, the mixture in the lining was centrifuged, and the obtained precipitate was washed with distilled water and absolute ethanol successively, dried in an oven at 80°C and then ground to obtain a graphene loading capacity of 0.2 % graphene/bismuth molybdate two-phase composite photocatalyst.
实施例4:石墨烯/钼酸铋/金三相复合物的制备Embodiment 4: the preparation of graphene/bismuth molybdate/gold three-phase compound
称取0.8g实施例2制得的石墨烯/钼酸铋复合物,放入烧杯,加入适量去离子水,搅拌,滴入80μL氯金酸溶液(10mg/mL),搅拌一个小时,再往悬浮液中加入乙醇,在紫外光灯下照射4h,离心,烘干,得金的负载量为0.1%的石墨烯/钼酸铋/金三相复合化合物。 Take by weighing the graphene/bismuth molybdate compound that 0.8g embodiment 2 makes, put into beaker, add appropriate amount of deionized water, stir, drop into 80 μ L of chloroauric acid solution (10mg/mL), stir for one hour, and then Ethanol was added to the suspension, irradiated under ultraviolet light for 4 hours, centrifuged, and dried to obtain a graphene/bismuth molybdate/gold three-phase composite compound with a gold loading of 0.1%.
实施例5:石墨烯/钼酸铋/金三相复合物的制备Embodiment 5: the preparation of graphene/bismuth molybdate/gold three-phase compound
称取0.8g实施例2制得的石墨烯/钼酸铋复合物,放入烧杯,加入适量去离子水,搅拌,滴入160μL氯金酸溶液(10mg/mL),搅拌一个小时,再往悬浮液中加入乙醇,在紫外光灯下照射4h,离心,烘干,得金的负载量为0.2%的石墨烯/钼酸铋/金三相复合化合物。 Take by weighing the graphene/bismuth molybdate compound that 0.8g embodiment 2 makes, put into beaker, add appropriate amount of deionized water, stir, drop into 160 μ L chloroauric acid solution (10mg/mL), stir for one hour, then Ethanol was added to the suspension, irradiated under ultraviolet light for 4 hours, centrifuged, and dried to obtain a graphene/bismuth molybdate/gold three-phase composite compound with a gold loading of 0.2%.
实施例6:石墨烯/钼酸铋/金三相复合物的制备Embodiment 6: the preparation of graphene/bismuth molybdate/gold three-phase compound
称取0.8g实施例2制得的石墨烯/钼酸铋复合物,放入烧杯,加入适量去离子水,搅拌,滴入320μL氯金酸溶液(10mg/mL),搅拌一个小时,再往悬浮液中加入乙醇,在紫外光灯下照射4h,离心,烘干,得金的负载量为0.4%的石墨烯/钼酸铋/金三相复合化合物。 Take by weighing the Graphene/bismuth molybdate compound that 0.8g embodiment 2 makes, put into beaker, add appropriate amount of deionized water, stir, drop into 320 μ L of chloroauric acid solution (10mg/mL), stir for one hour, and then Ethanol was added to the suspension, irradiated under ultraviolet light for 4 hours, centrifuged, and dried to obtain a graphene/bismuth molybdate/gold three-phase composite compound with a gold loading of 0.4%.
性能测试 Performance Testing
图1为实施例2、4、5和6所得的石墨烯/钼酸铋/金三相复合光催化剂的粉末XRD图。从图中可以发现所制备的催化剂为正交晶相的钼酸铋,石墨烯和金颗粒的引入未改变钼酸铋的晶相。 Fig. 1 is the powder XRD figure of the graphene/bismuth molybdate/gold three-phase composite photocatalyst obtained in embodiment 2, 4, 5 and 6. It can be seen from the figure that the prepared catalyst is bismuth molybdate in orthorhombic crystal phase, and the introduction of graphene and gold particles does not change the crystal phase of bismuth molybdate.
图2为实施例6所得的石墨烯/钼酸铋/金三相复合光催化剂的粉末TEM图。从图中可以发现制备的石墨烯/钼酸铋/金三相复合物中钼酸铋和石墨烯呈片状结构,二者紧密接触,金颗粒则分布在片层上。 Figure 2 is a powder TEM image of the graphene/bismuth molybdate/gold three-phase composite photocatalyst obtained in Example 6. It can be seen from the figure that the bismuth molybdate and graphene in the prepared graphene/bismuth molybdate/gold three-phase composite have a sheet-like structure, and the two are in close contact, and the gold particles are distributed on the sheet.
图3为实施例2、4、5和6所得的石墨烯/钼酸铋/金三相复合光催化剂降解罗丹明B的效果图。石墨烯/钼酸铋/金三相复合光催化剂可见光催化剂测试,通过在300W氙灯照射下降解罗丹明B(1×10-5mol/L)进行表征。可见光催化反应是在HSX-F/UV300氙灯光源***装置中进行的,光源经滤光片过滤,以保证入射光为可见光(λ>420nm);催化剂用量为40mg。在开灯反应前先吸附1h使罗丹明B在催化剂上吸附-脱附平衡后开灯光照。从图3可以看出同时负载了金和还原石墨烯的钼酸铋光催化剂降解罗丹明B的活性大大提高。 Fig. 3 is the graphene/bismuth molybdate/gold three-phase composite photocatalyst degrading effect figure of rhodamine B obtained in embodiment 2, 4, 5 and 6. Graphene/bismuth molybdate/gold three-phase composite photocatalyst visible light catalyst test, characterized by degrading rhodamine B (1×10 -5 mol/L) under 300W xenon lamp irradiation. The visible light catalytic reaction is carried out in the HSX-F/UV300 xenon lamp light source system device, and the light source is filtered by a filter to ensure that the incident light is visible light (λ>420nm); the catalyst dosage is 40mg. Adsorb for 1 hour before turning on the light to allow rhodamine B to adsorb-desorb on the catalyst and then turn on the light to illuminate. It can be seen from Figure 3 that the activity of bismuth molybdate photocatalyst loaded with gold and reduced graphene to degrade rhodamine B is greatly improved.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410006052.XA CN103721713B (en) | 2014-01-07 | 2014-01-07 | A kind of three-phase composite visible of efficient degradation dyestuff |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410006052.XA CN103721713B (en) | 2014-01-07 | 2014-01-07 | A kind of three-phase composite visible of efficient degradation dyestuff |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103721713A CN103721713A (en) | 2014-04-16 |
CN103721713B true CN103721713B (en) | 2016-01-06 |
Family
ID=50446152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410006052.XA Active CN103721713B (en) | 2014-01-07 | 2014-01-07 | A kind of three-phase composite visible of efficient degradation dyestuff |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103721713B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106587028A (en) * | 2017-02-09 | 2017-04-26 | 山东佳星环保科技有限公司 | Method of preparing graphene by oxidation and reduction process |
CN107138165B (en) * | 2017-05-08 | 2019-08-27 | 河南师范大学 | A preparation method of supported Bi2MoO6/Cu(OH)2/graphene photocatalyst |
CN108043400B (en) * | 2017-12-08 | 2019-10-18 | 浙江工业大学 | Au-Bi2MoO6Diatomite composite material and preparation method and application thereof |
CN108031467B (en) * | 2017-12-08 | 2019-10-18 | 浙江工业大学 | Bi2MoO6Clad halloysite nanotube composite material and preparation method and application thereof |
CN113351221B (en) * | 2021-06-08 | 2023-09-29 | 常州大学 | Preparation method and application of graphene-based bismuth-based heterostructure catalyst |
-
2014
- 2014-01-07 CN CN201410006052.XA patent/CN103721713B/en active Active
Non-Patent Citations (5)
Title |
---|
Enhanced photocatalytic water disinfection properties of Bi2MoO6-RGO nanocomposites under visible light irradiation;Yan Zhang等;《Nanoscale》;20130515;第5卷;第6307-6310页 * |
In situ growth of Bi2MoO6 on reduced grapheme oxide nanosheets for improved visible-light photocatalytic activity;Guohui Tian等;《CrystEngComm》;20131105;第16卷;第842-849页 * |
Photocatalytic degradation of phenol using Au/ Bi2MoO6 composite microspheres under visible-light irradiation;Jian-Yi Liu等;《Micro&Nano Letters》;20131231;第8卷(第2期);第90–93页 * |
石墨烯的氧化还原法制备及结构表征;杨勇辉等;《无机化学学报》;20101130;第26卷(第11期);第2083-2090页 * |
纳米Au粒子作为直接硼氢化钠-过氧化氢燃料电池阴极催化剂;魏建良等;《化学学报》;20081231;第66卷(第24期);第2675-2680页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103721713A (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lan et al. | Application of polyoxometalates in photocatalytic degradation of organic pollutants | |
Aghdam et al. | Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water | |
CN106492854B (en) | There is the composite nano Ag of photocatalysis performance using two-step method preparation3PO4/TiO2Material and methods and applications | |
CN104549406A (en) | A g-C3N4/bismuth-based oxide composite visible light catalyst and its preparation method and application | |
CN106607063B (en) | Float type visible-light photocatalyst and preparation method and application | |
CN104801328B (en) | Method for preparing TiO2/g-C3N4 composite photocatalyst at low temperature | |
CN110227453B (en) | Preparation method of AgCl/ZnO/GO composite visible light catalyst | |
CN102211030B (en) | Nano silver/silver bromide/bismuth oxybromide heterogeneous visible light photo-catalytic material and preparation method thereof | |
CN103191725B (en) | BiVO4/Bi2WO6 compound semiconductor material and its hydrothermal preparation method and its application | |
CN107159313A (en) | A kind of core shell structure TiO2The preparation method of nanotube@Ti MOF catalyst | |
CN105214689B (en) | A kind of TiO2/ CdS/ Graphene composite photocatalyst materials and preparation method thereof | |
CN103506142B (en) | A kind of Molybdenum disulfide/silver phosphate composite visible light photocatalytic material and preparation method thereof | |
CN103721713B (en) | A kind of three-phase composite visible of efficient degradation dyestuff | |
CN104772158A (en) | A kind of preparation method of WO3/C3N4 mixed photocatalyst | |
CN105709782B (en) | A kind of preparation and application of Ag/AgBr/BiOCl- (001) nanocomposite | |
CN102600857A (en) | Preparation method of CuO-BiVO4 heterojunction composite photocatalyst supported by carbon spheres | |
CN105879886B (en) | A kind of preparation method of GO/Sb BiOBr composite photo-catalysts | |
CN104826623B (en) | Bismuth oxide photocatalyst, preparation method and applications thereof | |
CN106563477A (en) | Ternary composite visible light photocatalyst, preparation method and application thereof | |
CN102249395A (en) | Water ozonization treatment method by taking cerium oxide nanomaterial as catalyst | |
CN104707632A (en) | A Visible Light Responsive Ag-AgBr/Bi20TiO32 Composite Photocatalyst and Its Preparation and Application | |
CN104826628A (en) | A preparation method of graphene-iron-doped TiO2 nanowires with high catalytic degradation activity under visible light | |
CN107552072A (en) | A kind of graphene CuInS2Nano composite photo-catalyst | |
CN111185204B (en) | A kind of visible light catalyst and its preparation method and application | |
CN105854912A (en) | A kind of BiPO4-WO3 composite photocatalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |