CN103496744A - 还原态铵钨青铜纳米粒子的制备方法 - Google Patents

还原态铵钨青铜纳米粒子的制备方法 Download PDF

Info

Publication number
CN103496744A
CN103496744A CN201310490453.2A CN201310490453A CN103496744A CN 103496744 A CN103496744 A CN 103496744A CN 201310490453 A CN201310490453 A CN 201310490453A CN 103496744 A CN103496744 A CN 103496744A
Authority
CN
China
Prior art keywords
tungsten bronze
preparation
ammonium tungsten
reduction
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310490453.2A
Other languages
English (en)
Other versions
CN103496744B (zh
Inventor
刘绍琴
果崇申
颜美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310490453.2A priority Critical patent/CN103496744B/zh
Publication of CN103496744A publication Critical patent/CN103496744A/zh
Application granted granted Critical
Publication of CN103496744B publication Critical patent/CN103496744B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

还原态铵钨青铜纳米粒子的制备方法,属于无机氧化物材料的制备领域。本发明在溶剂热条件下,以有机长链高沸点酸为反应媒介,有机钨源和有机高沸点胺为原料,在非水环境下一步控制合成铵钨青铜纳米粒子。本发明制备的样品为六角相铵钨青铜纳米晶体,尺寸在80~500nm之间可以进行调控,形态均匀,粒径分布窄,化学价态为W6+和W5+混合存在,富含自由电子。此外,本发明所制备的样品具有较强的近红外线吸收能力,含有纳米粒子的薄膜可以有效的屏蔽掉780~2500nm的近红外线并且保持对可见光的较高透过率。

Description

还原态铵钨青铜纳米粒子的制备方法
技术领域
本发明属于无机氧化物材料的制备领域,涉及一种还原态铵钨青铜纳米粉体的制备方法。
背景技术
钨青铜化合物是一类重要的无机化合物,此类化合物中钨离子以W6+、W5+和W4+等混合价态存在从而使化合物整体电荷平衡。丰富的晶体结构、隧道结构和这种特殊的价态使其具有优异的性能,如电子和离子导电性、超导性、光学性能等,其在二次电池、电制变色、近红外吸收和化学传感器等方面的应用引起广泛的研究兴趣。
目前,合成钨青铜类化合物主要依赖于湿化学法、热还原法和热分解法。湿法化学合成铵钨青铜主要是将起始原料在还原性溶剂中回流数天,此方法所得到的样品粒径过大,通常在几个到几十个微米之间,且制备过程时间长,能耗大。热还原法则是将氧化钨、金属钨粉末和金属钨酸盐按适当比例均匀混合,然后在惰性气氛或真空下加热,反应温度一般在1000℃左右,反应完成之后除去未反应的杂质。由于铵钨青铜的热稳定性差,分解温度(300℃)低于合成温度,因此热还原法无法用于合成铵钨青铜。热分解法合成铵钨青铜是将仲钨酸铵在还原气氛(H2或H2和N2、Ar的混合气体等)下加热分解,除了所得样品粒径过大外,此方法还无法得到完全纯相的铵钨青铜,样品中铵含量过低以及易过度分解为氧化钨等缺点。
截止目前的研究还无法直接获得纯相的铵钨青铜纳米粉体,因此通常将所得到的微米级大颗粒通过球磨的方式破碎成小粒子,但是此类化合物在球磨过程中既容易被氧化而失活又容易分解,同时还伴随着结晶性能下降等缺点,因此至今还没有办法一步直接获得纳米铵钨青铜粉体。
发明内容
针对现有技术存在的上述问题,本发明提供了一种直接合成粒径可控铵钨青铜纳米粉体的合成方法。
本发明的方法按以下步骤进行:
(1)将0.01~1g有机钨源溶解于20~40ml有机酸溶液中,通过搅拌得到均匀溶液,然后加入4~30ml有机胺,混合至均匀,移至反应釜中,150~350℃晶化反应0.5~48小时,反应后将粉体样品离心,洗涤,于40~250 ℃真空干燥1~12小时,即获得粉体样品。
(2)分别采用RIGAKU D/Max 3400 X-射线衍射仪:Cu-Kα/40KV/100mA,扫描速度1度/分钟,分析样品晶体结构和物相;Hitachi S-4800型扫描电子显微镜(SEM)和ZEISS LEO 922型透射电子显微镜(TEM),观测纳米粒子的形貌和孔结构。X光电子能谱分析(Perkin Elmer PHI 5600)样品中钨原子的化学价态日本分光V-670紫外/可见/近红外分光光度计用于测定样品的光吸收特性。
本发明中,所述有机酸为油酸。
本发明中,所述的有机胺为油胺。
本发明中,所述有机钨源为六氯化钨或四氯化钨。
本发明中,铵基团在组成中摩尔分率在0.2~0.3之间。
本发明在溶剂热条件下,以有机长链高沸点酸为反应媒介,有机钨源和有机高沸点胺为原料,在非水环境下一步控制合成铵钨青铜纳米粒子。本方法的显著优势在于合成步骤简单,可产量化,获得粒子形貌均匀,结晶性好,粒径分布窄,大小在一定范围内可调,化学价态为还原态,无需长时间高温过程和后续球磨过程,直接获得纳米粉体。
如图1-8所示,本发明制备的样品为六角相铵钨青铜纳米晶体,尺寸在80~500nm之间可以进行调控,形态均匀,粒径分布窄,化学价态为W6+和W5+混合存在,富含自由电子。此外,如图9所示,本发明所制备的样品具有较强的近红外线吸收能力,含有纳米粒子的薄膜可以有效的屏蔽掉780~2500nm的近红外线并且保持对可见光的较高透过率。
附图说明
图1为铵钨青铜纳米粉体的X射线衍射谱图;
图2为铵钨青铜的X射线光电子能谱图;
图3为80nm方块状铵钨青铜粒子透射电子显微镜图;
图4为棒状铵钨青铜粒子透射电子显微镜图;
图5为110nm方块状铵钨青铜粒子透射电子显微镜图;
图6为250nm方块状铵钨青铜粒子透射电子显微镜图;
图7为150nm方块状铵钨青铜粒子透射电子显微镜图;
图8为200nm方块状铵钨青铜粒子透射电子显微镜图;
图9为含有铵钨青铜纳米粉体的薄膜的透射和反射光谱。
具体实施方式
下面结合实施例对本发明的技术方案作进一步的说明,但并不局限如此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
向100ml水热反应釜中加入36ml油酸和0.4 g WCl6粉末后,在室温下搅拌混合;待完全溶解后,再加入4 ml油胺,然后密封反应釜,于烘箱内200 ℃静置晶化24 h。冷却到室温后离心分离,依次用30 mL去离子水和30 mL无水乙醇交替洗涤三次,真空干燥后,获得铵钨青铜蓝色粉体,其为方块状铵钨青铜粒子,平均直径为80nm。
实施例2
向100ml水热反应釜中加入25ml油酸和0.4 g WCl6粉末后,在室温下搅拌混合;待完全溶解后,再加入15 ml油胺,然后密封反应釜,于烘箱内200 ℃静置晶化24 h。冷却到室温后离心分离,依次用30 mL去离子水和30 mL无水乙醇洗涤交替三次,真空干燥后,获得铵钨青铜蓝色粉体,其为棒状铵钨青铜粒子,平均直径为50nm,纳米棒平均长度为350nm。
实施例3
将0.4g氯化钨溶解于32ml油酸中,充分搅拌至完全溶解,然后加入8ml油胺,混合至均匀,移至超临界反应釜中,350℃晶化反应1小时,反应后将粉体样品离心,洗涤,于60℃ 真空干燥6小时,获得铵钨青铜蓝色粉体,其为方块状铵钨青铜粒子,平均直径为110nm。
实施例4:
将0.4g氯化钨溶解于20ml油酸中,充分搅拌至完全溶解,然后加入20ml油胺,混合至均匀,移至超临界反应釜中,350℃晶化反应1小时,反应后将粉体样品离心,洗涤,于60 ℃真空干燥6小时,获得铵钨青铜蓝色粉体,其为方块状铵钨青铜粒子,平均直径为250nm。
实施例5
将0.4g氯化钨溶解于36ml油酸中,充分搅拌至完全溶解,然后加入4ml油胺,混合至均匀,移至超临界反应釜中,350℃ 晶化反应1小时,反应后将粉体样品离心,洗涤,于60℃真空干燥6小时,获得铵钨青铜蓝色粉体,铵钨青铜粒子的平均直径为150nm。
实施例6
向100ml水热反应釜中加入36ml油酸和0.4 g WCl4粉末后,在室温下搅拌混合;待完全溶解后,再加入4 ml油胺,然后密封反应釜,于烘箱内200 ℃静置晶化24 h。冷却到室温后离心分离,依次用30 mL去离子水和30 mL无水乙醇交替洗涤三次,真空干燥后,获得铵钨青铜蓝色粉体,其为方块状铵钨青铜粒子,平均直径为200nm。
 
实施例7:
    本实例为本发明制备的铵钨青铜纳米粒子在近红外屏蔽薄膜方面的评价方法和结果。
将上述所得的110 nm 铵钨青铜纳米粒子(实施例3)按照如下步骤制备成膜:
按照质量比为纳米粉体:10%火棉胶:乙醇= 0.15:1.0 : 0.93的方式将样品混合,然后将所得母液密封并磁力搅拌一天;将分散均匀后的浆液滴于玻璃基底上,并用带有12.5μm凹槽的模具将浆液涂成均匀薄膜,风干后,获得厚度约为1μm的薄膜样品。
结果表明,含有少量本发明中铵钨青铜纳米粉体的薄膜可以在保证较高可见光透过率的同时有效的屏蔽掉紫外线和近红外线。与商业化的ITO玻璃或者LaBr6等近红外屏蔽材料相比,本发明的纳米粉体可以在整个近红外区(780-2500 nm)产生高效的屏蔽效应,而不是局限于某一位置。此外,本发明的粉体制备更加简单,来源广泛。

Claims (7)

1.还原态铵钨青铜纳米粒子的制备方法,其特征在于所述方法步骤如下:
将0.01~1g有机钨源溶解于20~40ml有机酸溶液中,通过搅拌得到均匀溶液,然后加入4~30ml有机胺,混合至均匀,移至反应釜中,150~350℃晶化反应0.5~48小时,反应后将粉体样品离心,洗涤,于40~250 ℃真空干燥1~12小时,即获得还原态铵钨青铜纳米粒子。
2.根据权利要求1所述的还原态铵钨青铜纳米粒子的制备方法,其特征在于所述有机酸为油酸。
3.根据权利要求1所述的还原态铵钨青铜纳米粒子的制备方法,其特征在于所述有机胺为油胺。
4.根据权利要求1所述的还原态铵钨青铜纳米粒子的制备方法,其特征在于所述有机钨源为六氯化钨或四氯化钨。
5.根据权利要求1所述的还原态铵钨青铜纳米粒子的制备方法,其特征在于所述还原态铵钨青铜纳米粒子中,铵基团在组成中摩尔分率在0.2~0.3之间。
6.根据权利要求1所述的还原态铵钨青铜纳米粒子的制备方法,其特征在于所述还原态铵钨青铜纳米粒子的尺寸在80~500nm之间。
7.根据权利要求1所述的还原态铵钨青铜纳米粒子的制备方法,其特征在于所述反应釜为水热反应釜或超临界反应釜。
CN201310490453.2A 2013-10-19 2013-10-19 还原态铵钨青铜纳米粒子的制备方法 Expired - Fee Related CN103496744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310490453.2A CN103496744B (zh) 2013-10-19 2013-10-19 还原态铵钨青铜纳米粒子的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310490453.2A CN103496744B (zh) 2013-10-19 2013-10-19 还原态铵钨青铜纳米粒子的制备方法

Publications (2)

Publication Number Publication Date
CN103496744A true CN103496744A (zh) 2014-01-08
CN103496744B CN103496744B (zh) 2015-04-15

Family

ID=49862037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310490453.2A Expired - Fee Related CN103496744B (zh) 2013-10-19 2013-10-19 还原态铵钨青铜纳米粒子的制备方法

Country Status (1)

Country Link
CN (1) CN103496744B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108176409A (zh) * 2018-01-18 2018-06-19 福州大学 一种氢钨青铜/硫化镉复合光催化剂的制备方法
CN109364871A (zh) * 2018-11-05 2019-02-22 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法
KR20190027257A (ko) * 2017-09-06 2019-03-14 주식회사 엘지화학 암모늄 텅스텐 브론즈의 제조방법
CN109896546A (zh) * 2019-03-01 2019-06-18 江西理工大学 一种铵钨青铜纳米棒的制备方法
CN111333113A (zh) * 2020-03-12 2020-06-26 厦门大学 一种铵钨青铜纳米棒及其制备方法
CN112091230A (zh) * 2019-06-18 2020-12-18 上海沪正实业有限公司 一种纳米铜粒子及其制备方法
CN113199022A (zh) * 2021-04-14 2021-08-03 华南理工大学 氟掺杂铵钨青铜/金纳米棒复合近红外屏蔽材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1386570A1 (ru) * 1986-06-30 1988-04-07 Институт химии Уральского научного центра АН СССР Способ получени оксидной вольфрамовой бронзы аммони
CN101056815A (zh) * 2004-11-10 2007-10-17 产学协力财团 磁性氧化物纳米颗粒和金属氧化物纳米颗粒的制造方法
CN102277023A (zh) * 2011-07-04 2011-12-14 大连工业大学 一种玻璃透明隔热涂料及其制备方法
CN102320662A (zh) * 2011-07-04 2012-01-18 大连工业大学 一种铯钨青铜粉体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1386570A1 (ru) * 1986-06-30 1988-04-07 Институт химии Уральского научного центра АН СССР Способ получени оксидной вольфрамовой бронзы аммони
CN101056815A (zh) * 2004-11-10 2007-10-17 产学协力财团 磁性氧化物纳米颗粒和金属氧化物纳米颗粒的制造方法
CN102277023A (zh) * 2011-07-04 2011-12-14 大连工业大学 一种玻璃透明隔热涂料及其制备方法
CN102320662A (zh) * 2011-07-04 2012-01-18 大连工业大学 一种铯钨青铜粉体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHONGSHEN GUO ET AL.: "Simple route to (NH4)xWO3 nanorods for near infrared absorption", 《NANOSCALE》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027257A (ko) * 2017-09-06 2019-03-14 주식회사 엘지화학 암모늄 텅스텐 브론즈의 제조방법
KR102145018B1 (ko) 2017-09-06 2020-08-14 주식회사 엘지화학 암모늄 텅스텐 브론즈의 제조방법
CN108176409A (zh) * 2018-01-18 2018-06-19 福州大学 一种氢钨青铜/硫化镉复合光催化剂的制备方法
CN108176409B (zh) * 2018-01-18 2019-07-09 福州大学 一种氢钨青铜/硫化镉复合光催化剂的制备方法
CN109364871A (zh) * 2018-11-05 2019-02-22 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法
CN109364871B (zh) * 2018-11-05 2021-08-03 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法
CN109896546A (zh) * 2019-03-01 2019-06-18 江西理工大学 一种铵钨青铜纳米棒的制备方法
CN109896546B (zh) * 2019-03-01 2021-08-27 江西理工大学 一种铵钨青铜纳米棒的制备方法
CN112091230A (zh) * 2019-06-18 2020-12-18 上海沪正实业有限公司 一种纳米铜粒子及其制备方法
CN111333113A (zh) * 2020-03-12 2020-06-26 厦门大学 一种铵钨青铜纳米棒及其制备方法
CN113199022A (zh) * 2021-04-14 2021-08-03 华南理工大学 氟掺杂铵钨青铜/金纳米棒复合近红外屏蔽材料及其制备方法
CN113199022B (zh) * 2021-04-14 2022-06-14 华南理工大学 氟掺杂铵钨青铜/金纳米棒复合近红外屏蔽材料及其制备方法

Also Published As

Publication number Publication date
CN103496744B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
CN103496744B (zh) 还原态铵钨青铜纳米粒子的制备方法
Reddy Green synthesis, morphological and optical studies of CuO nanoparticles
Sczancoski et al. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal
Fang et al. Microstructure and luminescence properties of Co-doped SnO 2 nanoparticles synthesized by hydrothermal method
Guo et al. Simple route to (NH 4) x WO 3 nanorods for near infrared absorption
JP5607167B2 (ja) 微粉状態の固体材料、該材料の製造方法及び太陽電池における該材料の使用
Sobhani et al. Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process
CN103539205A (zh) 形貌和尺寸可控混合价态钨基纳米粒子的制备方法
Feng et al. Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media
Deng et al. Novel Bi19S27Br3 superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance
Yuan et al. Facile synthesis of flake-like FeSe 2 particles in open-air conditions
Dalvand et al. Controlling morphology and structure of nanocrystalline cadmium sulfide (CdS) by tailoring solvothermal processing parameters
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
Feng et al. Study on growth mechanism and optical properties of ZnSe nanoparticles
Ge et al. Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance
Dutková et al. Synthesis and characterization of CuInS 2 nanocrystalline semiconductor prepared by high-energy milling
CN108557888A (zh) 一种金属相二硫化钼纳米结构及其制备方法
Thirumalai et al. Controlled synthesis, formation mechanism and lumincence properties of novel 3-dimensional Gd 2 (MoO 4) 3: Eu 3+ nanostructures
Mahmoud et al. Facile synthesis of high yield two dimensional zinc vanadate nanoflakes
Zhou et al. A facile method for preparation ZnO with different morphology and their optical property
Zhou et al. Effect of variation Mn/W molar ratios on phase composition, morphology and optical properties of MnWO4
CN105290414A (zh) 一种合成纳米铜颗粒的方法
Foroughi et al. Graphene oxide doped with PbO nanoparticles, synthesis by microwave assistant thermal decomposition and investigation of optical property
Xiong et al. Facile synthesis and characterization of erythrocyte-like Y-doped PbWO4 mesocrystals and their photocatalytic activity
Rakhi et al. An investigation on effect of complexing agents on zirconium based ternary metal oxide nanoparticles by co-precipitation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150415