CN103395837B - Preparation method of Bi12TiO20 powder - Google Patents
Preparation method of Bi12TiO20 powder Download PDFInfo
- Publication number
- CN103395837B CN103395837B CN201310294372.5A CN201310294372A CN103395837B CN 103395837 B CN103395837 B CN 103395837B CN 201310294372 A CN201310294372 A CN 201310294372A CN 103395837 B CN103395837 B CN 103395837B
- Authority
- CN
- China
- Prior art keywords
- tio
- powder
- microwave
- naoh
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims description 9
- 229910002116 Bi12TiO20 Inorganic materials 0.000 title 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 51
- 239000002243 precursor Substances 0.000 claims abstract description 24
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 11
- 150000002500 ions Chemical class 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 239000012153 distilled water Substances 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims description 12
- 230000007935 neutral effect Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 12
- 239000013078 crystal Substances 0.000 abstract description 7
- 238000005303 weighing Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910002115 bismuth titanate Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种Bi12TiO20粉体的制备方法,将NaOH加入到去离子水中,搅拌至溶解;按Bi、Ti离子摩尔比12:1分别称取Bi(NO3)3·5H2O和TiO2,并加入到NaOH溶液中,搅拌得到混合均匀的前驱液;将前驱液转入微波反应釜中;将微波反应釜放入微波水热反应设备中反应;待反应结束冷却后,取出反应釜,将所得产物先用蒸馏水洗涤至中性后再用无水乙醇洗涤,最后经烘箱干燥,得到Bi12TiO20粉体,本发明采用微波水热法制备出了Bi12TiO20粉体,所采用的工艺简单、效率高,所得粉体晶相发育完整,纯度高;晶粒形貌规则、尺寸均匀。A method for preparing Bi 12 TiO 20 powder, adding NaOH to deionized water, stirring until dissolved; weighing Bi(NO 3 ) 3 5H 2 O and TiO 2 respectively according to the molar ratio of Bi and Ti ions of 12:1 , and added to the NaOH solution, stirred to obtain a uniformly mixed precursor solution; the precursor solution was transferred to the microwave reactor; the microwave reactor was put into the microwave hydrothermal reaction equipment for reaction; after the reaction was completed and cooled, the reactor was taken out, The obtained product is first washed with distilled water to neutrality, then washed with absolute ethanol, and finally dried in an oven to obtain Bi 12 TiO 20 powder. The present invention adopts microwave hydrothermal method to prepare Bi 12 TiO 20 powder. The process is simple and efficient, and the crystal phase of the obtained powder is completely developed and the purity is high; the grain shape is regular and the size is uniform.
Description
技术领域 technical field
本发明属于功能材料领域,特别涉及一种Bi12TiO20粉体的制备方法。 The invention belongs to the field of functional materials, in particular to a preparation method of Bi 12 TiO 20 powder.
背景技术 Background technique
Bi12TiO20是钛酸铋系列众多氧化物中的一种,其晶体结构为立方晶系123点群,晶胞由[TiO4]四面体和[BiO5]多面体两个结构单元组成。Bi12TiO20具有旋光度小、线性电光系数大、红光区灵敏度高等优点,属于宽带半导体,它同时具有光电、电光、荧光、磁光、声光、旋光及压电等性质。特别是它的优良光电和电光性质,使得其在光电子、光学、光信息处理材料等领域都有着极广阔的应用前景。钛酸铋系化合物奇特的晶体结构和电子结构使它们具有半导体光催化剂的性能,研究发现它们的带隙能为2.6~2.8eV,均小于TiO2的带隙能,所以这一类化合物在可见光下具有光催化能力,其中Bi12TiO20的光催化活性最强,几乎达到了与P-25(TiO2)相同的活性。 Bi 12 TiO 20 is one of many oxides in the bismuth titanate series. Its crystal structure is cubic 123 point group, and its unit cell consists of two structural units: [TiO 4 ] tetrahedron and [BiO 5 ] polyhedron. Bi 12 TiO 20 has the advantages of small optical rotation, large linear electro-optic coefficient, and high sensitivity in the red light region. In particular, its excellent photoelectric and electro-optical properties make it have a very broad application prospect in the fields of optoelectronics, optics, and optical information processing materials. The unique crystal structure and electronic structure of bismuth titanate compounds make them have the performance of semiconductor photocatalysts. It is found that their bandgap energy is 2.6-2.8eV, which is smaller than that of TiO 2 . Under the photocatalytic ability, Bi 12 TiO 20 has the strongest photocatalytic activity, almost reaching the same activity as P-25 (TiO 2 ).
目前,Bi12TiO20粉体的合成方法主要有共沉淀法和化学溶液分解法。但是,这两种方法需要高温煅烧,所得粉体容易团聚,形貌难以控制。微波水热法是一种新的合成粉体的方法,它将传统的水热合成法与微波场结合起来,充分发挥了微波和水热法的优势。微波水热法具有反应速度快,产物粒度可控且纯度高、结晶度好、团聚少等特点,近年来在无机陶瓷粉体材料的制备中发挥了极大的优势并具有广阔的发展前景。 At present, the synthesis methods of Bi 12 TiO 20 powder mainly include co-precipitation method and chemical solution decomposition method. However, these two methods require high-temperature calcination, and the obtained powder is easy to agglomerate, and the shape is difficult to control. Microwave hydrothermal method is a new method of synthesizing powder, which combines the traditional hydrothermal synthesis method with microwave field, and gives full play to the advantages of microwave and hydrothermal method. The microwave hydrothermal method has the characteristics of fast reaction speed, controllable product particle size, high purity, good crystallinity, and less agglomeration. In recent years, it has played a great role in the preparation of inorganic ceramic powder materials and has broad development prospects.
发明内容 Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种Bi12TiO20粉体的制备方法,采用微波水热法制备出了Bi12TiO20粉体,所采用的工艺简单、效率高,所得粉体晶相发育完整,纯度高;晶粒形貌规则、尺寸均匀。 In order to overcome the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a method for preparing Bi 12 TiO 20 powder, which uses microwave hydrothermal method to prepare Bi 12 TiO 20 powder, and the process adopted is simple and efficient , the obtained powder has complete crystal phase development and high purity; the grain shape is regular and the size is uniform.
为了实现上述目的,本发明采用的技术方案是: In order to achieve the above object, the technical scheme adopted in the present invention is:
一种Bi12TiO20粉体的制备方法,包括如下步骤: A preparation method of Bi 12 TiO 20 powder, comprising the steps of:
步骤1:将NaOH加入到去离子水中,搅拌至溶解,NaOH的浓度为1.0~3.0mol/L; Step 1: Add NaOH into deionized water, stir until dissolved, and the concentration of NaOH is 1.0-3.0mol/L;
步骤2:按Bi、Ti离子摩尔比12:1分别称取Bi(NO3)3·5H2O和TiO2,并加入到NaOH溶液中,搅拌0.5~1h后得到混合均匀的前驱液,前驱液中,Bi、Ti离子总浓度为0.01~0.10mol/L; Step 2: Weigh Bi(NO 3 ) 3 5H 2 O and TiO 2 respectively according to the molar ratio of Bi and Ti ions of 12:1, and add them into the NaOH solution, and stir for 0.5-1 hour to obtain a uniformly mixed precursor solution. In the liquid, the total concentration of Bi and Ti ions is 0.01-0.10mol/L;
步骤3:将前驱液转入微波反应釜中,前驱液的体积控制在微波反应釜体积的50%-70%; Step 3: Transfer the precursor liquid into the microwave reactor, and the volume of the precursor liquid is controlled at 50%-70% of the volume of the microwave reactor;
步骤4:将微波反应釜放入微波水热反应设备中,让前驱液在150~220℃下反应30~120min; Step 4: Put the microwave reactor into the microwave hydrothermal reaction equipment, let the precursor solution react at 150-220°C for 30-120min;
步骤5:待反应结束冷却后,取出反应釜,将所得产物先用蒸馏水洗涤至中性后再用无水乙醇洗涤1次,最后经烘箱干燥,得到Bi12TiO20粉体。 Step 5: After the reaction is finished and cooled, take out the reaction kettle, wash the obtained product with distilled water until it is neutral, then wash it once with absolute ethanol, and finally dry it in an oven to obtain Bi 12 TiO 20 powder.
与现有技术相比,本发明采用微波水热法,合成出了Bi12TiO20粉体。本发明所采用的工艺方法简单、效率高、便于掺杂;由于不需要后续煅烧处理,粉体的分散性好;此外,所得粉体晶相发育完整,纯度高,形貌规则、尺寸均匀、细小。Bi12TiO20粉体的微波水热合成为其制备提供了一种新的路线,也有望促进人们对其结构、性能等方面进行更深层次研究。 Compared with the prior art, the present invention adopts microwave hydrothermal method to synthesize Bi 12 TiO 20 powder. The process method adopted in the present invention is simple, high in efficiency, and convenient for doping; since no subsequent calcination treatment is required, the dispersibility of the powder is good; in addition, the crystal phase of the obtained powder is complete, high in purity, regular in shape, uniform in size, small. The microwave hydrothermal synthesis of Bi 12 TiO 20 powder provides a new route for its preparation, and it is also expected to promote people's in-depth research on its structure and properties.
附图说明 Description of drawings
图1是本发明实施例三制备的粉体的XRD图谱。 Fig. 1 is the XRD spectrum of the powder prepared in Example 3 of the present invention.
图2是本发明实施例三制备的Bi12TiO20粉体的SEM图。 Fig. 2 is a SEM image of Bi 12 TiO 20 powder prepared in Example 3 of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例详细说明本发明的实施方式。 The implementation of the present invention will be described in detail below in conjunction with the drawings and examples.
实施例一 Embodiment one
一种Bi12TiO20粉体的制备方法,包括如下步骤: A preparation method of Bi 12 TiO 20 powder, comprising the steps of:
步骤1:将NaOH加入到去离子水中,搅拌至溶解,NaOH的浓度为1.0mol/L; Step 1: Add NaOH to deionized water, stir until dissolved, and the concentration of NaOH is 1.0mol/L;
步骤2:按Bi、Ti离子摩尔比12:1分别称取Bi(NO3)3·5H2O和TiO2,并 加入到NaOH溶液中,搅拌0.5h后得到混合均匀的前驱液,前驱液中,Bi、Ti离子总浓度为0.01mol/L; Step 2: Weigh Bi(NO 3 ) 3 5H 2 O and TiO 2 respectively according to the molar ratio of Bi and Ti ions of 12:1, and add them into the NaOH solution, stir for 0.5h to obtain a uniformly mixed precursor solution, the precursor solution Among them, the total concentration of Bi and Ti ions is 0.01mol/L;
步骤3:将前驱液转入微波反应釜中,前驱液的体积控制在微波反应釜体积的50%; Step 3: Transfer the precursor liquid into the microwave reactor, and the volume of the precursor liquid is controlled at 50% of the volume of the microwave reactor;
步骤4:将微波反应釜放入微波水热反应设备中,让前驱液在150℃下反应120min; Step 4: Put the microwave reactor into the microwave hydrothermal reaction equipment, let the precursor solution react at 150°C for 120min;
步骤5:待反应结束冷却后,取出反应釜,将所得产物先用蒸馏水洗涤至中性后再用无水乙醇洗涤1次,最后经烘箱干燥,得到Bi12TiO20粉体。 Step 5: After the reaction is finished and cooled, take out the reaction kettle, wash the obtained product with distilled water until it is neutral, then wash it once with absolute ethanol, and finally dry it in an oven to obtain Bi 12 TiO 20 powder.
实施例二 Embodiment two
一种Bi12TiO20粉体的制备方法,包括如下步骤: A preparation method of Bi 12 TiO 20 powder, comprising the steps of:
步骤1:将NaOH加入到去离子水中,搅拌至溶解,NaOH的浓度为3.0mol/L; Step 1: Add NaOH to deionized water, stir until dissolved, and the concentration of NaOH is 3.0mol/L;
步骤2:按Bi、Ti离子摩尔比12:1分别称取Bi(NO3)3·5H2O和TiO2,并加入到NaOH溶液中,搅拌1h后得到混合均匀的前驱液,前驱液中,Bi、Ti离子总浓度为0.10mol/L; Step 2: Weigh Bi(NO 3 ) 3 5H 2 O and TiO 2 respectively according to the molar ratio of Bi and Ti ions of 12:1, and add them into the NaOH solution, and stir for 1 hour to obtain a uniformly mixed precursor solution. , the total concentration of Bi and Ti ions is 0.10mol/L;
步骤3:将前驱液转入微波反应釜中,前驱液的体积控制在微波反应釜体积的70%; Step 3: Transfer the precursor liquid into the microwave reactor, and the volume of the precursor liquid is controlled at 70% of the volume of the microwave reactor;
步骤4:将微波反应釜放入微波水热反应设备中,让前驱液在220℃下反应30min; Step 4: Put the microwave reactor into the microwave hydrothermal reaction equipment, let the precursor solution react at 220°C for 30 minutes;
步骤5:待反应结束冷却后,取出反应釜,将所得产物先用蒸馏水洗涤至中性后再用无水乙醇洗涤1次,最后经烘箱干燥,得到Bi12TiO20粉体。 Step 5: After the reaction is finished and cooled, take out the reaction kettle, wash the obtained product with distilled water until it is neutral, then wash it once with absolute ethanol, and finally dry it in an oven to obtain Bi 12 TiO 20 powder.
实施例三 Embodiment Three
一种Bi12TiO20粉体的制备方法,包括如下步骤: A preparation method of Bi 12 TiO 20 powder, comprising the steps of:
步骤1:将NaOH加入到去离子水中,搅拌至溶解,NaOH的浓度为2.0mol/L; Step 1: Add NaOH to deionized water, stir until dissolved, and the concentration of NaOH is 2.0mol/L;
步骤2:按Bi、Ti离子摩尔比12:1分别称取Bi(NO3)3·5H2O和TiO2,并加入到NaOH溶液中,搅拌0.8h后得到混合均匀的前驱液,前驱液中,Bi、 Ti离子总浓度为0.06mol/L; Step 2: Weigh Bi(NO 3 ) 3 5H 2 O and TiO 2 respectively according to the molar ratio of Bi and Ti ions of 12:1, and add them into the NaOH solution, stir for 0.8 hours to obtain a uniformly mixed precursor solution, the precursor solution Among them, the total concentration of Bi and Ti ions is 0.06mol/L;
步骤3:将前驱液转入微波反应釜中,前驱液的体积控制在微波反应釜体积的60%; Step 3: Transfer the precursor liquid into the microwave reactor, and the volume of the precursor liquid is controlled at 60% of the volume of the microwave reactor;
步骤4:将微波反应釜放入微波水热反应设备中,让前驱液在180℃下反应80min; Step 4: Put the microwave reactor into the microwave hydrothermal reaction equipment, and let the precursor solution react at 180°C for 80 minutes;
步骤5:待反应结束冷却后,取出反应釜,将所得产物先用蒸馏水洗涤至中性后再用无水乙醇洗涤1次,最后经烘箱干燥,得到Bi12TiO20粉体。 Step 5: After the reaction is finished and cooled, take out the reaction kettle, wash the obtained product with distilled water until it is neutral, then wash it once with absolute ethanol, and finally dry it in an oven to obtain Bi 12 TiO 20 powder.
图1是制备的粉体的XRD图谱,可以看出其与PDF数据库中的标准卡片NO.78-1158完全吻合,说明粉体的晶相组成为Bi12TiO20,此外可见X射线衍射峰的峰型尖锐、峰强较高,说明粉体晶型发育良好。图2是制备的Bi12TiO20粉体的SEM图,可见粉体颗粒分散性较好,形貌规则,似球状;此外颗粒尺寸均匀,约为100nm。 Figure 1 is the XRD pattern of the prepared powder, it can be seen that it is completely consistent with the standard card No.78-1158 in the PDF database, indicating that the crystal phase composition of the powder is Bi 12 TiO 20 , and the X-ray diffraction peak can be seen The peak shape is sharp and the peak intensity is high, indicating that the crystal form of the powder is well developed. Figure 2 is the SEM image of the prepared Bi 12 TiO 20 powder. It can be seen that the powder particles have good dispersion, regular shape, and spherical shape; in addition, the particle size is uniform, about 100nm.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310294372.5A CN103395837B (en) | 2013-07-12 | 2013-07-12 | Preparation method of Bi12TiO20 powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310294372.5A CN103395837B (en) | 2013-07-12 | 2013-07-12 | Preparation method of Bi12TiO20 powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103395837A CN103395837A (en) | 2013-11-20 |
CN103395837B true CN103395837B (en) | 2015-05-20 |
Family
ID=49559635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310294372.5A Expired - Fee Related CN103395837B (en) | 2013-07-12 | 2013-07-12 | Preparation method of Bi12TiO20 powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103395837B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014000359A1 (en) | 2014-01-16 | 2015-07-30 | Merck Patent Gmbh | pigments |
CN104211118A (en) * | 2014-08-26 | 2014-12-17 | 浙江大学 | A preparation method and product of Bi4Ti3O12 microsheets |
CN104211119B (en) * | 2014-08-26 | 2016-01-20 | 浙江大学 | A kind of Bi 12tiO 20the preparation method of micron film and product |
CN104211115B (en) * | 2014-08-26 | 2015-12-02 | 浙江大学 | A kind of Bi 12tiO 20the preparation method of micron ball and product |
CN104211117B (en) * | 2014-08-26 | 2016-01-20 | 浙江大学 | A kind of Bi 4ti 3o 12the preparation method of nanometer sheet and product |
CN105728011B (en) * | 2016-02-05 | 2018-03-20 | 武汉理工大学 | A kind of tetrahedron pattern Bi12TiO20/g‑C3N4Composite visible light catalyst and preparation method thereof |
CN106477628B (en) * | 2016-09-22 | 2017-11-07 | 宝鸡文理学院 | A kind of Bi12TiO20Controllable method for preparing |
CN108772053B (en) * | 2018-06-29 | 2020-12-15 | 辽宁石油化工大学 | A kind of bismuth titanate/bismuth oxide photocatalyst and its preparation method and application |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101525239B (en) * | 2009-04-22 | 2012-05-30 | 南京工业大学 | Microwave hydrothermal method for synthesizing Bi0.5Na0.5TiO3Method for producing spherical particles |
CN101774637A (en) * | 2009-11-25 | 2010-07-14 | 天津大学 | Method for preparing self-assembly Bi12TiO20 micro-spheres by solution method |
US8709304B2 (en) * | 2009-12-14 | 2014-04-29 | Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno | Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels |
-
2013
- 2013-07-12 CN CN201310294372.5A patent/CN103395837B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103395837A (en) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103395837B (en) | Preparation method of Bi12TiO20 powder | |
CN101890354B (en) | Method for preparing bismuth ferrite photocatalyst | |
CN103011288B (en) | A preparation method of BiVO4 powder with visible light photocatalytic performance | |
CN102775141B (en) | Microwave Dielectric Ceramic Method for Finely Synthesizing Ternary ZnO-Nb2O5-TiO2 System by Wet Chemical Method | |
CN101302036A (en) | A kind of preparation method of doped titanium dioxide nanotube | |
CN105645459B (en) | A kind of surface modification sea urchin shape ZnO/TiO2Composite and preparation method thereof | |
CN101462763B (en) | Preparation of high yield high stability nano zinc oxide fluid dispersion | |
CN106563485A (en) | Carbon nitride/potassium calcium niobate composite material and preparing method and application thereof | |
CN102602997A (en) | Method for preparing indium vanadate nano particles | |
CN102992403A (en) | Method for preparing one-dimensional nano bar-shaped potassium niobate powder | |
CN107055597B (en) | The method of cubic bismuth titanate sodium powder body is quickly prepared under a kind of low temperature | |
Hosono et al. | Crystal-growth process of single-crystal-like mesoporous ZnO through a competitive reaction in solution | |
CN106629840B (en) | A kind of truncated cylinder shape octahedron Detitanium-ore-type TiO2Preparation method | |
CN102515268A (en) | Preparation method of high-dispersion titanium dioxide nanopowder | |
CN106238052A (en) | A kind of preparation method of titanium dioxide zinc oxide carbon/carbon-copper composite material | |
CN102698735A (en) | Preparation method of flower spherical Bi4V2O11 visible light catalyst | |
CN104556217B (en) | A method for preparing divalent metal titanate microspheres | |
CN101407328B (en) | Method for preparing zinc aluminum oxide nano-powder | |
CN103447024A (en) | Preparation method of bismuth-based strontium magnetic photo-catalyst, and bismuth-based strontium magnetic photo-catalyst | |
CN103433036B (en) | A kind of catalysis material Ag/AgMO 2and preparation method thereof | |
CN109331831A (en) | Efficient visible light catalyst single crystal nanosheet and preparation method thereof | |
CN106881118B (en) | A kind of method of ion-exchange synthesis heterojunction photocatalyst | |
CN106517319B (en) | A kind of preparation method of calcium titanate micron particles | |
CN108654663A (en) | A kind of mixed nitrate molten-salt growth method prepares the nitrogen co-doped single-crystal meso-pore TiO of boron2The method of catalysis material | |
CN102259909B (en) | A kind of preparation method for the lead carbonate combustion catalyst of solid propellant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150520 Termination date: 20210712 |