CN103274443A - A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof - Google Patents

A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof Download PDF

Info

Publication number
CN103274443A
CN103274443A CN2013101412593A CN201310141259A CN103274443A CN 103274443 A CN103274443 A CN 103274443A CN 2013101412593 A CN2013101412593 A CN 2013101412593A CN 201310141259 A CN201310141259 A CN 201310141259A CN 103274443 A CN103274443 A CN 103274443A
Authority
CN
China
Prior art keywords
zno
leaf
quadrangular
shaped
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101412593A
Other languages
Chinese (zh)
Inventor
汪阳
郁可
李守川
尹海宏
宋长青
朱自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN2013101412593A priority Critical patent/CN103274443A/en
Publication of CN103274443A publication Critical patent/CN103274443A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料,包括硅片衬底及生长在所述硅片上的四角树叶状Cu2O-ZnO复合纳米结构;其中,所述Cu2O-ZnO复合纳米结构由Cu2O微米颗粒和ZnO纳米颗粒组成,所述Cu2O微米颗粒具有四角树叶状结构,所述ZnO纳米颗粒覆盖在所述Cu2O微米颗粒表面。本发明还公开了四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法。本发明制备方法操作简单,所得到的Cu2O-ZnO异质纳米结构的光能利用率显著提高。The invention discloses a quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material, which includes a silicon wafer substrate and a quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure grown on the silicon wafer; wherein, the Cu The 2 O-ZnO composite nanostructure is composed of Cu 2 O microparticles and ZnO nanoparticles, the Cu 2 O microparticles have a quadrangular leaf-like structure, and the ZnO nanoparticle covers the surface of the Cu 2 O microparticles. The invention also discloses a preparation method of the tetragonal leaf-shaped Cu 2 O-ZnO compound nanostructure semiconductor material. The preparation method of the invention is simple to operate, and the light energy utilization rate of the obtained Cu2O -ZnO heterogeneous nanostructure is significantly improved.

Description

一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料及其制备方法A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof

技术领域technical field

本发明属于光电子材料、半导体材料与器件技术领域,具体涉及一种由四角树叶状Cu2O微米颗粒和ZnO纳米颗粒构造而成的Cu2O-ZnO复合纳米结构半导体材料,以及分步合成Cu2O微米颗粒及ZnO纳米颗粒后将二者复合在一起的制备方法。The invention belongs to the technical field of optoelectronic materials, semiconductor materials and devices, and in particular relates to a Cu 2 O-ZnO composite nanostructure semiconductor material composed of tetragonal leaf-shaped Cu 2 O micro-particles and ZnO nanoparticles, and the step-by-step synthesis of Cu 2 O micro-particles and ZnO nano-particles and the preparation method of compounding them together.

背景技术Background technique

Cu2O作为一种常见的直接带隙p型半导体,被广泛应用于太阳能电池、利用太阳光水解析氢、Li离子电池和利用可见光降解有机污染等。ZnO由于其直接带隙,宽禁带(3.3eV,对应约380nm处的近紫外光),相对大的激子结合能(60meV),高载流子迁移率并且价格低廉,制备简单等优点,被广泛应用于太阳能电池,气敏传感器,场发射器件等领域。As a common direct bandgap p-type semiconductor, Cu 2 O is widely used in solar cells, hydrogen desorption from water using sunlight, Li-ion batteries, and degradation of organic pollution using visible light. ZnO has the advantages of direct bandgap, wide bandgap (3.3eV, corresponding to near-ultraviolet light at about 380nm), relatively large exciton binding energy (60meV), high carrier mobility, low price, and simple preparation. It is widely used in solar cells, gas sensors, field emission devices and other fields.

已经有一些科学家开展了Cu2O-ZnO基异质结太阳能电池应用方面的研究。然而,由于Cu2O和ZnO的晶格失配,同时,由于Cu2O在1000℃以下空气中的相对不稳定性,导致了普通的VLS工艺和水热法不能实现Cu2O-ZnO基异质纳米结构的合成。目前已合成的Cu2O-ZnO基异质纳米结构大多采用的是电镀,电化学合成或溅射工艺,而合成的异质界面多为平板结构。这会导致载流子迁移长度不足以及光生电子-空穴对的高复合率等缺陷,从而直接影响异质结***的太阳光能量利用效率。Some scientists have carried out research on the application of Cu 2 O-ZnO based heterojunction solar cells. However, due to the lattice mismatch between Cu 2 O and ZnO, and at the same time, due to the relative instability of Cu 2 O in air below 1000 °C, the common VLS process and hydrothermal method cannot achieve Cu 2 O-ZnO-based Synthesis of heterogeneous nanostructures. Most of the currently synthesized Cu 2 O-ZnO-based heterogeneous nanostructures adopt electroplating, electrochemical synthesis or sputtering processes, and most of the synthesized heterostructures are planar structures. This will lead to defects such as insufficient carrier migration length and high recombination rate of photogenerated electron-hole pairs, which directly affect the solar energy utilization efficiency of the heterojunction system.

因此,亟需一种简便的Cu2O-ZnO复合纳米结构的制备方法以及具有更高光能利用率的Cu2O-ZnO异质纳米结构。Therefore, there is an urgent need for a simple preparation method of Cu 2 O-ZnO composite nanostructures and Cu 2 O-ZnO heterogeneous nanostructures with higher light energy utilization efficiency.

发明内容Contents of the invention

本发明的目的是提供一种四角树叶状Cu2O-ZnO复合纳米结构及其制备方法。The object of the present invention is to provide a tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure and a preparation method thereof.

本发明所提供的Cu2O-ZnO复合纳米结构,是由四角树叶状Cu2O微米颗粒和ZnO纳米颗粒构在聚乙酰亚胺的辅助作用下复合而成的,Cu2O基体尺寸一般在1.5~3μm,形状为四角树叶状微米颗粒,其表面复合有ZnO纳米颗粒,颗粒直径在20~40nm。本发明中,Cu2O微米颗粒具有四角树叶状结构,具体地,该结构是由中心向四个互相垂直的方向延伸,呈四角状,并且其表面呈现类似树叶的脉络结构,故称为四角树叶状。该结构在长宽方向上尺寸为1.5~3μm。The Cu 2 O-ZnO composite nanostructure provided by the present invention is composed of tetragonal leaf-shaped Cu 2 O micro-particles and ZnO nano-particles under the assistance of polyacetimide. The size of the Cu 2 O matrix is generally between 1.5-3μm, the shape is quadrangular leaf-like micron particles, the surface of which is compounded with ZnO nanoparticles, and the particle diameter is 20-40nm. In the present invention, the Cu 2 O micro-particles have a quadrangular leaf-like structure, specifically, the structure extends from the center to four mutually perpendicular directions in a quadrangular shape, and its surface presents a vein structure similar to a leaf, so it is called quadrangular Leafy. The size of the structure in the length and width direction is 1.5-3 μm.

本发明提出一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料,包括硅片衬底,及生长在所述硅片上的四角树叶状Cu2O-ZnO复合纳米结构。其中,所述Cu2O-ZnO复合纳米结构由Cu2O微米颗粒和ZnO纳米颗粒组成,所述Cu2O微米颗粒具有四角树叶状结构,所述ZnO纳米颗粒覆盖在所述Cu2O微米颗粒表面。其中,所述Cu2O微米颗粒中心位置具有凹陷,由所述凹陷处向互相垂直的四个方向生长出叶片状之结构的角,其表面具有树叶脉络层状结构。即,Cu2O微米颗粒由中心向四个互相垂直的方向延伸,呈四角状,并且其表面呈现类似树叶的脉络结构。The invention provides a quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material, which includes a silicon substrate and a quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure grown on the silicon wafer. Wherein, the Cu 2 O-ZnO composite nanostructure is composed of Cu 2 O micro-particles and ZnO nanoparticles, the Cu 2 O micro-particles have a quadrangular leaf-like structure, and the ZnO nanoparticles cover the Cu 2 O micro-particles particle surface. Wherein, the center of the Cu 2 O microparticles has a depression, and the corners of the leaf-shaped structure grow from the depression in four directions perpendicular to each other, and the surface has a leaf-veined layered structure. That is, the Cu 2 O micro-particles extend from the center to four mutually perpendicular directions in a quadrangular shape, and the surface presents a leaf-like vein structure.

本发明四角树叶状Cu2O-ZnO复合纳米结构半导体材料中,所述Cu2O微米颗粒在长宽方向上尺寸为1.5~3μm,所述ZnO纳米颗粒直径为20~40nm。In the tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material of the present invention, the size of the Cu 2 O micron particles in the length and width direction is 1.5-3 μm, and the diameter of the ZnO nano-particles is 20-40 nm.

本发明四角树叶状Cu2O-ZnO复合纳米结构半导体材料中,利用水热合成法分别合成Cu2O微米颗粒和ZnO纳米颗粒,以聚乙烯亚胺作为协助材料使所述ZnO纳米颗粒均匀地复合在Cu2O微米颗粒上,得到所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料。In the tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material of the present invention, Cu 2 O micro-particles and ZnO nanoparticles are respectively synthesized by hydrothermal synthesis, and polyethyleneimine is used as an auxiliary material to make the ZnO nanoparticles uniform Composite on Cu 2 O micron particles to obtain the tetragonal leaf-shaped Cu 2 O—ZnO composite nanostructure semiconductor material.

本发明还提供一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法,包括以下步骤:The present invention also provides a preparation method of quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material, comprising the following steps:

(1)制备Cu2O微米颗粒(1) Preparation of Cu 2 O micron particles

将氯化铜、聚乙烯吡咯烷酮、碳酸钾与柠檬酸钾混合搅拌,待变蓝后加入葡萄糖,于80℃真空反应2小时,冷却后经洗涤、烘干得到四角树叶状Cu2O微米颗粒。Mix and stir copper chloride, polyvinylpyrrolidone, potassium carbonate and potassium citrate, add glucose after turning blue, react in vacuum at 80°C for 2 hours, wash and dry after cooling to obtain quadrangular leaf-shaped Cu 2 O micron particles.

(2)制备ZnO纳米颗粒(2) Preparation of ZnO nanoparticles

将尿素溶液与氯化锌混合搅拌,经真空140℃下反应6小时,冷却后洗涤,得到ZnO纳米颗粒。Mix and stir the urea solution and zinc chloride, react under vacuum at 140° C. for 6 hours, wash after cooling, and obtain ZnO nanoparticles.

(3)复合(3) Composite

将所述四角树叶状Cu2O微米颗粒溶解在含有聚乙烯亚胺的去离子水中,加热至90℃反应,冷却并经洗涤后得到Cu2O-PEI溶液;加入所述ZnO纳米颗粒,经混合搅拌、超声处理得到Cu2O-PEI-ZnO沉淀,经洗涤后、滴涂于硅片上并于80℃下烘干;在氩气保护下进行快速退火,制备得到四角树叶状Cu2O-ZnO复合纳米结构半导体材料。Dissolve the tetragonal leaf-shaped Cu 2 O micro-particles in deionized water containing polyethyleneimine, heat to 90°C for reaction, cool and wash to obtain a Cu 2 O-PEI solution; add the ZnO nanoparticles, Cu 2 O-PEI-ZnO precipitate was obtained by mixing, stirring and ultrasonic treatment. After washing, it was drop-coated on a silicon wafer and dried at 80°C; rapid annealing was carried out under the protection of argon to prepare Cu 2 O -ZnO composite nanostructure semiconductor material.

本发明四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法中,所述混合搅拌由磁力搅拌机对溶液进行均匀搅拌。本发明制备方法中采用的磁力搅拌机,其关键部件是由环状线圈做成的底座和一小块由磁石做成的搅拌磁子。将装有待测溶液的烧杯置于底座上后,将搅拌磁子放入溶液内,将底座通上交流电,由电磁感应产生的交变电磁场带动小磁子在溶液中匀速转动,可以达到均匀搅拌溶液的目的。In the preparation method of the tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material of the present invention, the mixing and stirring is carried out by a magnetic stirrer to uniformly stir the solution. The magnetic stirrer that adopts in the preparation method of the present invention, its key component is the base that is made of annular coil and a small piece of stirring magnet that is made of magnet. After placing the beaker containing the solution to be tested on the base, put the stirring magnet into the solution, connect the base with alternating current, and the alternating electromagnetic field generated by electromagnetic induction drives the small magnet to rotate at a constant speed in the solution, which can achieve uniformity. The purpose of stirring the solution.

本发明四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法中,所述步骤(1)、(2)的反应在高压反应釜中进行,所述高压反应釜内管材料是聚四氟乙烯,外管材料是不锈钢。本发明制备方法中采用的高压反应釜,其由两根半径不同的圆柱形管互套组成的,内管材料是聚四氟乙烯,长度为70mm,直径为44mm;外管材料是不锈钢,长度为92mm,直径为50mm。将待反应溶液倒入内管中,将内管放入外管,将外管密封,可在内管中形成高压、密封的环境。In the preparation method of the tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material of the present invention, the reactions of the steps (1) and (2) are carried out in a high-pressure reactor, and the inner tube material of the high-pressure reactor is polytetrafluoroethylene Vinyl fluoride, outer tube material is stainless steel. The autoclave used in the preparation method of the present invention is composed of two cylindrical tubes with different radii. The material of the inner tube is polytetrafluoroethylene, the length is 70mm, and the diameter is 44mm; the material of the outer tube is stainless steel. It is 92mm and the diameter is 50mm. Pour the solution to be reacted into the inner tube, put the inner tube into the outer tube, and seal the outer tube to form a high-pressure and sealed environment in the inner tube.

本发明采用分步工艺,先用水热合成方法分别制备出Cu2O微米结构和ZnO纳米结构,再采用低温水浴和热退火工艺将二者复合在一起得到Cu2O-ZnO复合纳米结构。利用这种方法生长的Cu2O-ZnO复合纳米结构,是在作为基体的Cu2O微米结构的基础上复合ZnO纳米颗粒组装而成,它不仅具有微米级的Cu2O基体,而且在其表面附有众多的纳米颗粒状突起。The invention adopts a step-by-step process, firstly preparing Cu2O microstructure and ZnO nanostructure respectively by hydrothermal synthesis method, and then compounding the two together by using low-temperature water bath and thermal annealing process to obtain Cu2O -ZnO composite nanostructure. The Cu 2 O-ZnO composite nanostructure grown by this method is composed of composite ZnO nanoparticles based on the Cu 2 O microstructure as the matrix. It not only has a micron-sized Cu 2 O matrix, but also has a There are numerous nanoparticle-like protrusions attached to the surface.

本发明方法克服了Cu2O和ZnO这两种物质由于热不稳定性和晶格失配导致的通常情况下难以使用水热法或高温热退火方法复合在一起的技术难度,并且该复合方法可以被推广到各种Cu2O和ZnO微、纳米结构的复合应用中。The method of the present invention overcomes the technical difficulty that Cu 2 O and ZnO are usually difficult to compound together by hydrothermal method or high-temperature thermal annealing method due to thermal instability and lattice mismatch, and the compound method It can be extended to various composite applications of Cu 2 O and ZnO micro and nano structures.

本发明的优点在于,(1)首次采用水热法结合水浴和热退火工艺,成功合成出Cu2O-ZnO复合纳米结构;(2)先利用聚乙烯亚胺连接Cu2O和ZnO,再通过热退火工艺除去聚乙酰亚胺中间层,实现Cu2O-ZnO界面的良好接触,该方法适用于各种不同Cu2O-ZnO微纳米结构的复合,不受结构形貌的限制,可用于合成具有高效光能利用率的复合结构;(3)制备方法简单,成本低,重复性好,适用范围广,而且是大面积的生长。The advantages of the present invention are: (1) for the first time, a Cu 2 O-ZnO composite nanostructure is successfully synthesized by using a hydrothermal method combined with a water bath and thermal annealing process; (2) firstly, polyethyleneimine is used to connect Cu 2 O and ZnO, and then The interlayer of polyacetimide is removed by thermal annealing process to achieve good contact of Cu 2 O-ZnO interface. This method is suitable for the composite of various Cu 2 O-ZnO micro-nano structures and is not limited by the structure morphology. It can be used (3) The preparation method is simple, the cost is low, the repeatability is good, the application range is wide, and it is a large-area growth.

本发明可用于在硅片衬底上大面积的生长本发明的Cu2O-ZnO复合结构,其独特的异质结构造以及众多表面纳米凸起,全光谱响应的能带结构,高场增强因子等特点可以实现其在太阳能光催化及场发射中的应用,因此具有巨大的科学研究价值和广阔的商业应用前景。The present invention can be used to grow the Cu 2 O-ZnO composite structure of the present invention in a large area on a silicon wafer substrate, its unique heterostructure structure and numerous surface nano-protrusions, the energy band structure of full spectral response, and high field enhancement Factors and other characteristics can realize its application in solar photocatalysis and field emission, so it has great scientific research value and broad commercial application prospects.

附图说明Description of drawings

图1是四角树叶状Cu2O-ZnO复合纳米结构的X射线衍射图;Figure 1 is an X-ray diffraction pattern of a quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure;

图2是四角树叶状的Cu2O微米颗粒的SEM照片;Fig. 2 is the SEM photograph of Cu 2 O microparticles of quadrangular leaf shape;

图3是大量四角树叶状Cu2O-ZnO复合纳米结构的SEM照片;Figure 3 is a SEM photo of a large number of tetragonal leaf-like Cu 2 O-ZnO composite nanostructures;

图4是四角树叶状Cu2O-ZnO复合纳米结构的放大倍数的SEM照片。Fig. 4 is a magnified SEM photo of the tetragonal leaf-like Cu 2 O-ZnO composite nanostructure.

具体实施方式Detailed ways

结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。The present invention will be further described in detail in conjunction with the following specific embodiments and accompanying drawings. The process, conditions, reagents, experimental methods, etc. for implementing the present invention are general knowledge and common knowledge in the art except for the content specifically mentioned below, and the present invention has no special limitation content.

实施例Example

本实施例中,四角树叶状Cu2O-ZnO复合纳米结构半导体材料的具体制备的步骤如下:In this example, the specific preparation steps of the tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material are as follows:

1、制备四角树叶状Cu2O微米颗粒1. Preparation of tetragonal leaf-shaped Cu 2 O micron particles

a)以去离子水为溶剂分别配制5mL浓度为0.2mol/L的氯化铜溶液以及5mL含有0.2g聚乙烯吡咯烷酮的溶液,将它们溶于70mL的去离子水中,用磁力搅拌机搅拌10分钟。a) Using deionized water as a solvent, prepare 5 mL of copper chloride solution with a concentration of 0.2 mol/L and 5 mL of a solution containing 0.2 g of polyvinylpyrrolidone, dissolve them in 70 mL of deionized water, and stir for 10 minutes with a magnetic stirrer.

b)再以去离子水为溶剂分别配制5mL浓度为1mol/L的碳酸钾溶液和5mL浓度为0.6mol/L的柠檬酸钾溶液,将这两份溶液先后倒入第一步得到的溶液中,在倒入的过程中保持搅拌。b) Using deionized water as a solvent, prepare 5 mL of potassium carbonate solution with a concentration of 1 mol/L and 5 mL of potassium citrate solution with a concentration of 0.6 mol/L, and pour these two solutions into the solution obtained in the first step. , keep stirring while pouring.

c)另以去离子水为溶剂配制5mL浓度为1mol/L的葡萄糖溶液,当第二步中的溶液变蓝后,将葡萄糖溶液倒入,搅拌5分钟。c) Separately prepare 5 mL of glucose solution with a concentration of 1 mol/L using deionized water as a solvent. When the solution in the second step turns blue, pour the glucose solution into the mixture and stir for 5 minutes.

d)将上一步得到的溶液倒入100mL聚四氟乙烯内胆的高压反应釜中密封,将反应釜放入鼓风干燥箱中,在80℃的温度下保持2小时。d) Pour the solution obtained in the previous step into a high-pressure reaction kettle with a 100 mL polytetrafluoroethylene liner and seal it, put the reaction kettle into a blast drying oven, and keep it at a temperature of 80° C. for 2 hours.

e)关闭干燥箱的电源使其自然冷却,将反应釜中的红棕色沉淀收集起来,用去离子水和无水乙醇反复冲洗数遍,将洗后的沉淀收集烘干便得到四角树叶状Cu2O微米颗粒。e) Turn off the power supply of the drying box to allow it to cool naturally, collect the reddish-brown precipitate in the reactor, rinse it several times with deionized water and absolute ethanol repeatedly, collect and dry the washed precipitate to obtain the quadrangular leaf-shaped Cu 2 O micron particles.

2、制备ZnO纳米颗粒2. Preparation of ZnO nanoparticles

a)首先以去离子水为溶剂分别配制10mL浓度为2mol/L的尿素溶液以及10mL浓度为0.5mol/L的氯化锌溶液,将它们溶于80mL的去离子水中,在室温下用磁力搅拌机搅拌30分钟。a) First, use deionized water as a solvent to prepare 10mL of urea solution with a concentration of 2mol/L and 10mL of zinc chloride solution with a concentration of 0.5mol/L, dissolve them in 80mL of deionized water, and use a magnetic stirrer at room temperature Stir for 30 minutes.

b)将上一步得到的溶液倒入100mL聚四氟乙烯内胆的高压反应釜中密封,将反应釜放入鼓风干燥箱中,在140℃的温度下保持6小时。b) Pour the solution obtained in the previous step into a 100mL polytetrafluoroethylene liner autoclave and seal it, put the reaction kettle into a blast drying oven, and keep it at a temperature of 140° C. for 6 hours.

c)关闭干燥箱自然冷却,将反应产物置于离心机中离心(6000rpm),收集沉淀,用去离子水和无水乙醇冲洗,并将含有ZnO纳米颗粒的去离子水溶液置于干燥箱内加热至80℃以去除残余有机杂质。c) Close the drying oven for natural cooling, place the reaction product in a centrifuge for centrifugation (6000rpm), collect the precipitate, rinse with deionized water and absolute ethanol, and place the deionized aqueous solution containing ZnO nanoparticles in the drying oven for heating to 80°C to remove residual organic impurities.

d)重复上述离心-冲洗-加热过程数遍后便得到保存于去离子水中的ZnO纳米颗粒,将该溶液保持震动,数分钟后立刻用于下面的复合步骤。d) After repeating the above centrifugation-rinsing-heating process several times, ZnO nanoparticles stored in deionized water are obtained, the solution is kept vibrating, and immediately used in the following compounding step after a few minutes.

3、制备Cu2O-ZnO复合纳米结构3. Preparation of Cu 2 O-ZnO composite nanostructures

a)将得到的四角树叶状Cu2O微米颗粒溶于100mL去离子水中,加入聚乙烯亚胺(PEI,MW~25000,2g/L),置于水浴锅中在90℃温度下加热2小时后自然冷却,得到Cu2O-PEI溶液。a) Dissolve the obtained Cu 2 O micro-particles in the form of tetragonal leaves in 100mL deionized water, add polyethyleneimine (PEI, M W ~25000, 2g/L), place in a water bath and heat at 90°C for 2 After 1 hour, it was naturally cooled to obtain a Cu 2 O-PEI solution.

b)将Cu2O-PEI沉淀收集并用去离子水清洗数次,置于50mL去离子水中,再将ZnO纳米颗粒加入上述溶液,并超声2小时,以得到Cu2O-PEI-ZnO沉淀。b) Cu 2 O-PEI precipitates were collected and washed several times with deionized water, placed in 50 mL of deionized water, and ZnO nanoparticles were added to the above solution, and ultrasonicated for 2 hours to obtain Cu 2 O-PEI-ZnO precipitates.

c)将上一步得到的沉淀收集起来,用去离子水和无水乙醇清洗数次,滴涂于清洗干净的硅片上,置于干燥箱中在80℃温度下干燥3小时。c) Collect the precipitate obtained in the previous step, wash it several times with deionized water and absolute ethanol, drop-coat it on the cleaned silicon wafer, and place it in a drying oven to dry at 80° C. for 3 hours.

d)将上一步得到的结果产物置于高温退火炉中在氩气和1000℃环境下加热5分钟除去PEI和其它有机杂质。剩余产物即为Cu2O-ZnO复合纳米结构。d) Place the resulting product obtained in the previous step in a high-temperature annealing furnace and heat for 5 minutes under argon gas at 1000° C. to remove PEI and other organic impurities. The remaining product is Cu 2 O-ZnO composite nanostructure.

如图1所示为四角树叶状Cu2O-ZnO复合纳米结构的X射线衍射图。由图可看到该复合样品由立方晶系的Cu2O和六方晶系ZnO组成,并未见明显杂质峰,说明样品的纯度较高。由这些尖锐的峰可以看出样品的结晶度高。Figure 1 shows the X-ray diffraction pattern of the quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure. It can be seen from the figure that the composite sample is composed of cubic Cu 2 O and hexagonal ZnO, and there are no obvious impurity peaks, indicating that the sample is of high purity. It can be seen from these sharp peaks that the crystallinity of the sample is high.

如图2所示为四角树叶状的Cu2O微米颗粒的SEM照片。可以看到Cu2O微米颗粒呈四角树叶状,在Cu2O微米颗粒中心位置有明显的凹陷,由中心凹陷处向互相垂直的四个方向生长出叶片状之结构的角,该叶片状结构的角的表面上具有类似树叶脉络的层状结构。Cu2O微米颗粒的长宽尺寸为1.5~3μm。Figure 2 is the SEM photo of Cu 2 O micro-particles in the shape of quadrangular leaves. It can be seen that the Cu 2 O micro-particles are in the shape of quadrangular leaves, and there is an obvious depression in the center of the Cu 2 O micro-particles. The corners of the leaf-like structure grow from the central depression to four directions perpendicular to each other. The leaf-like structure The surface of the horn has a layered structure resembling the veins of a leaf. The length and width dimensions of the Cu 2 O micron particles are 1.5-3 μm.

如图3所示为大量四角树叶状Cu2O-ZnO复合纳米结构的SEM照片。可以看到Cu2O微米颗粒大体上仍具有四角的外形形状,但表面的树叶脉络状结构已经不再明显,这是由于大量的ZnO纳米颗粒均匀复合在Cu2O微米颗粒的表面造成的。Figure 3 shows the SEM photos of a large number of tetragonal leaf-like Cu 2 O-ZnO composite nanostructures. It can be seen that the Cu 2 O micro-particles generally still have a quadrangular shape, but the vein-like structure of leaves on the surface is no longer obvious, which is caused by a large number of ZnO nanoparticles uniformly compounded on the surface of the Cu 2 O micro-particles.

如图4所示为四角树叶状Cu2O-ZnO复合纳米结构的放大倍数的SEM照片。可以看到Cu2O-ZnO复合纳米结构仍然呈四角状,大量的ZnO纳米颗粒均匀复合在Cu2O微米颗粒的表面,完全覆盖了Cu2O微米颗粒表面的树叶脉络状结构。ZnO纳米颗粒的直径为20~40nm。Figure 4 is a magnified SEM photo of the tetragonal leaf-like Cu 2 O-ZnO composite nanostructure. It can be seen that the Cu 2 O-ZnO composite nanostructure is still quadrangular, and a large number of ZnO nanoparticles are evenly compounded on the surface of Cu 2 O microparticles, completely covering the leaf vein structure on the surface of Cu 2 O microparticles. The diameter of ZnO nanoparticles is 20-40nm.

将本发明四角树叶状Cu2O-ZnO复合纳米结构在硅片衬底上大面积生长,得到具有独特的异质结构造的半导体材料,其具有众多表面纳米凸起、全光谱响应的能带结构、高场增强因子等特点。该半导体材料适用于太阳能光催化及场发射中的应用。The tetragonal leaf-shaped Cu 2 O-ZnO composite nanostructure of the present invention is grown on a silicon substrate in a large area to obtain a semiconductor material with a unique heterostructure structure, which has many surface nano-protrusions and energy bands with full spectral response Structure, high field enhancement factor and other characteristics. The semiconductor material is suitable for applications in solar photocatalysis and field emission.

本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。The protection content of the present invention is not limited to the above embodiments. Without departing from the spirit and scope of the inventive concept, changes and advantages conceivable by those skilled in the art are all included in the present invention, and the appended claims are the protection scope.

Claims (6)

1.一种四角树叶状Cu2O-ZnO复合纳米结构半导体材料,其特征在于,包括硅片衬底及生长在所述硅片上的四角树叶状Cu2O-ZnO复合纳米结构;其中,所述Cu2O-ZnO复合纳米结构由Cu2O微米颗粒和ZnO纳米颗粒组成,所述Cu2O微米颗粒具有四角树叶状结构,所述ZnO纳米颗粒覆盖在所述Cu2O微米颗粒表面;其中,所述Cu2O微米颗粒中心位置具有凹陷,由所述凹陷处向互相垂直的四个方向生长出叶片状之结构的角,其表面具有树叶脉络层状结构。1. A quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material, characterized in that it comprises a silicon wafer substrate and a quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure grown on the silicon wafer; wherein, The Cu 2 O-ZnO composite nanostructure is composed of Cu 2 O microparticles and ZnO nanoparticles, the Cu 2 O microparticles have a quadrangular leaf-like structure, and the ZnO nanoparticles cover the surface of the Cu 2 O microparticles ; Wherein, the central position of the Cu 2 O microparticles has a depression, and the corners of the leaf-like structure grow from the depression in four directions perpendicular to each other, and the surface has a leaf vein layer structure. 2.如权利要求1所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料,其特征在于,所述Cu2O微米颗粒在长宽方向上尺寸为1.5~3μm,所述ZnO纳米颗粒直径为20~40nm。2. The quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material according to claim 1, characterized in that the size of the Cu 2 O micro-particles in the length and width direction is 1.5-3 μm, and the diameter of the ZnO nanoparticles is 20-40nm. 3.一种权利要求1所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法,其特征在于,利用水热合成法分别合成Cu2O微米颗粒和ZnO纳米颗粒,以聚乙烯亚胺作为协助材料使所述ZnO纳米颗粒均匀地复合在Cu2O微米颗粒上,得到所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料。3. a preparation method of quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material as claimed in claim 1, is characterized in that, utilizes hydrothermal synthesis method to synthesize respectively Cu 2 O micron particles and ZnO nano-particles, with polyethylene The imine is used as an assisting material to uniformly compound the ZnO nanometer particles on the Cu 2 O microparticles to obtain the tetragonal leaf-shaped Cu 2 O—ZnO composite nanostructure semiconductor material. 4.如权利要求3所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法,其特征在于,包括以下步骤:4. The method for preparing quadrangular leaf-shaped Cu 2 O-ZnO composite nanostructure semiconductor material as claimed in claim 3, characterized in that it comprises the following steps: (1)制备Cu2O微米颗粒(1) Preparation of Cu 2 O micron particles 将氯化铜、聚乙烯吡咯烷酮、碳酸钾与柠檬酸钾混合搅拌,待变蓝后加入葡萄糖,于80℃真空反应2小时,冷却后经洗涤、烘干得到四角树叶状Cu2O微米颗粒;Mix and stir copper chloride, polyvinylpyrrolidone, potassium carbonate and potassium citrate, add glucose after turning blue, react in vacuum at 80°C for 2 hours, wash and dry after cooling to obtain quadrangular leaf-shaped Cu 2 O micron particles; (2)制备ZnO纳米颗粒(2) Preparation of ZnO nanoparticles 将尿素溶液与氯化锌混合搅拌,经真空140℃下反应6小时,冷却后洗涤,得到ZnO纳米颗粒;Mix and stir the urea solution and zinc chloride, react under vacuum at 140°C for 6 hours, cool and wash to obtain ZnO nanoparticles; (3)复合(3) Composite 将所述四角树叶状Cu2O微米颗粒溶解在含有聚乙烯亚胺的去离子水中,加热至90℃反应,冷却并经洗涤后得到Cu2O-PEI溶液;加入所述ZnO纳米颗粒,经混合搅拌、超声处理得到Cu2O-PEI-ZnO沉淀,经洗涤后、滴涂于硅片上并于80℃下烘干;在氩气保护下进行快速退火,制备得到四角树叶状Cu2O-ZnO复合纳米结构半导体材料。Dissolve the tetragonal leaf-shaped Cu 2 O micro-particles in deionized water containing polyethyleneimine, heat to 90°C for reaction, cool and wash to obtain a Cu 2 O-PEI solution; add the ZnO nanoparticles, Cu 2 O-PEI-ZnO precipitates were obtained by mixing and stirring, and ultrasonic treatment. After washing, they were drop-coated on silicon wafers and dried at 80°C; rapid annealing was carried out under the protection of argon to prepare quadrangular leaf-shaped Cu2O-ZnO Composite nanostructured semiconductor materials. 5.根据权利要求4所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法,其特征在于,所述混合搅拌由磁力搅拌机对溶液进行均匀搅拌。5 . The method for preparing quadrangular leaf-shaped Cu 2 O—ZnO composite nanostructure semiconductor material according to claim 4 , characterized in that, the mixing and stirring is carried out by a magnetic stirrer to uniformly stir the solution. 6.根据权利要求4所述四角树叶状Cu2O-ZnO复合纳米结构半导体材料的制备方法,其特征在于,所述步骤(1)、(2)的反应在高压反应釜中进行,所述高压反应釜内管材料是聚四氟乙烯,外管材料是不锈钢。6. according to the preparation method of quadrangular leaf shape Cu 2 O-ZnO compound nanostructure semiconductor material of claim 4, it is characterized in that, the reaction of described step (1), (2) is carried out in autoclave, described The inner tube material of the autoclave is polytetrafluoroethylene, and the outer tube material is stainless steel.
CN2013101412593A 2013-04-22 2013-04-22 A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof Pending CN103274443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101412593A CN103274443A (en) 2013-04-22 2013-04-22 A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101412593A CN103274443A (en) 2013-04-22 2013-04-22 A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof

Publications (1)

Publication Number Publication Date
CN103274443A true CN103274443A (en) 2013-09-04

Family

ID=49057106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101412593A Pending CN103274443A (en) 2013-04-22 2013-04-22 A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103274443A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327574A (en) * 2014-09-29 2015-02-04 中国海洋大学 A kind of micro/nano Cu2O/ZnO composite material and its preparation method and its application
CN104402052A (en) * 2014-10-30 2015-03-11 华东师范大学 TiO2 quantum dot composite MoS2 nanoflower heterojunction semiconductor material and preparation method thereof
CN106732617A (en) * 2016-12-05 2017-05-31 安徽理工大学 A kind of ZnO/Cu2O hetero-junctions novel photocatalysis materials and preparation method thereof
CN107224972A (en) * 2017-07-26 2017-10-03 齐齐哈尔大学 Flower ball-shaped structure ZnO/ZnWO4The synthetic method of photochemical catalyst
CN108187756A (en) * 2018-01-03 2018-06-22 福建农林大学 A kind of preparation method of memory-type photocatalytic fiber element microballoon
CN109126800A (en) * 2018-07-20 2019-01-04 西安交通大学 A kind of preparation method of cuprous oxide-copper-zine oxide composite photo-catalyst
CN109160726A (en) * 2018-09-27 2019-01-08 江苏华鸥玻璃有限公司 A kind of high-performance glass and preparation method thereof
CN115683404A (en) * 2022-10-28 2023-02-03 山东科技大学 Flexible piezoresistive sensor based on bionic multi-stage structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580405A (en) * 2009-06-05 2009-11-18 华东师范大学 Semiconductor material with ZnO cone-shaped nano structure compounded on silicon chip and preparation method thereof
CN102211949A (en) * 2010-04-12 2011-10-12 华东师范大学 Semiconductor material and preparation method thereof compounding In2O3 multi-angle layered tower-like nanostructure on silicon wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580405A (en) * 2009-06-05 2009-11-18 华东师范大学 Semiconductor material with ZnO cone-shaped nano structure compounded on silicon chip and preparation method thereof
CN102211949A (en) * 2010-04-12 2011-10-12 华东师范大学 Semiconductor material and preparation method thereof compounding In2O3 multi-angle layered tower-like nanostructure on silicon wafer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG WANG ET AL.: "Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities", 《NANOSCALE》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327574A (en) * 2014-09-29 2015-02-04 中国海洋大学 A kind of micro/nano Cu2O/ZnO composite material and its preparation method and its application
CN104402052A (en) * 2014-10-30 2015-03-11 华东师范大学 TiO2 quantum dot composite MoS2 nanoflower heterojunction semiconductor material and preparation method thereof
CN104402052B (en) * 2014-10-30 2016-02-10 华东师范大学 TiO 2quantum dot compound MoS 2nano flower heterojunction semiconductor material and preparation method thereof
CN106732617A (en) * 2016-12-05 2017-05-31 安徽理工大学 A kind of ZnO/Cu2O hetero-junctions novel photocatalysis materials and preparation method thereof
CN106732617B (en) * 2016-12-05 2019-07-12 安徽理工大学 A kind of ZnO/Cu2O heterojunction photocatalysis material and preparation method thereof
CN107224972A (en) * 2017-07-26 2017-10-03 齐齐哈尔大学 Flower ball-shaped structure ZnO/ZnWO4The synthetic method of photochemical catalyst
CN108187756A (en) * 2018-01-03 2018-06-22 福建农林大学 A kind of preparation method of memory-type photocatalytic fiber element microballoon
CN109126800A (en) * 2018-07-20 2019-01-04 西安交通大学 A kind of preparation method of cuprous oxide-copper-zine oxide composite photo-catalyst
CN109160726A (en) * 2018-09-27 2019-01-08 江苏华鸥玻璃有限公司 A kind of high-performance glass and preparation method thereof
CN109160726B (en) * 2018-09-27 2019-08-13 江苏华鸥玻璃有限公司 A kind of high-performance glass and preparation method thereof
CN115683404A (en) * 2022-10-28 2023-02-03 山东科技大学 Flexible piezoresistive sensor based on bionic multi-stage structure and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103274443A (en) A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof
CN103626220B (en) Method for preparing carbon-doped zinc oxide microsphere with multilevel structure
CN105618781B (en) A kind of Au@Cu2-xThe preparation method of Se caged nanometer nuclear shell nano-structures
CN104016313B (en) A kind of preparation method of six side's copper selenide nanometer sheet
CN102965105B (en) A kind of graphene-CuInS2 quantum dot composite and preparation method thereof
CN106732617B (en) A kind of ZnO/Cu2O heterojunction photocatalysis material and preparation method thereof
CN104437555B (en) Wavy MoS2 nanosheet inlaid TiO2 dandelion nanosphere composite heterojunction semiconductor material and preparation method thereof
CN105600828B (en) A kind of porous nano CuFe2O4Preparation method
CN102502791B (en) Method for preparing flower-cluster-shaped tin sulfide (SnS) nanometer particles by microwave hydrothermal method
CN104030371B (en) A method for synthesizing NiO microspheres with mesoporous sheet structure by soft template method
CN106315660A (en) Preparation method of copper oxide nanowire
CN104324715A (en) Three-dimensional MoS2/SnO2 heterogeneous semiconductor nanomaterial and its preparation method
CN104368328B (en) Bismuth titanate-strontium titanate photocatalytic composite powder and preparation method thereof
CN102502788A (en) Simple and controllable preparation method of copper-indium-sulfur ternary semiconductor nano granules
CN103824902B (en) A kind of FeS2Film and preparation method thereof
CN107555470A (en) A kind of method of two-step method synthesis zinc cadmium sulphur solid-solution material
CN103496733A (en) Method for preparing carbon doped zinc oxide
CN104576074A (en) A preparation method of ultra-long TiO2 nanowire array thin film photoanode
CN106629830B (en) A kind of zinc titanate nano-material and its application in perovskite solar cell
CN106365465A (en) Preparation method of three-dimensional titanium dioxide-gold-carbon nitride ternary material
CN105366714A (en) Synthetic method of stannic oxide nanoflower array
CN105060352B (en) A preparation method of nickel oxide nanosheet/titanium dioxide nanorod heterojunction material
CN107014952A (en) A kind of rGO/ZnCo2O4The preparation method of/Au tri compound room temperature gas sensitive
CN103247718B (en) Chemical method for in-situ control and synthesis of AgCuS/Ag3CuS2 ternary semiconductor photoelectric thin-film material at normal temperature
CN104692466B (en) A non-template method for preparing α-Fe2O3 hollow tubular nanofilms

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130904