CN103272622B - Preparation method of silver phosphate photocatalyst - Google Patents
Preparation method of silver phosphate photocatalyst Download PDFInfo
- Publication number
- CN103272622B CN103272622B CN201310246213.8A CN201310246213A CN103272622B CN 103272622 B CN103272622 B CN 103272622B CN 201310246213 A CN201310246213 A CN 201310246213A CN 103272622 B CN103272622 B CN 103272622B
- Authority
- CN
- China
- Prior art keywords
- silver phosphate
- preparation
- photocatalyst
- phosphate photocatalyst
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 40
- FJOLTQXXWSRAIX-UHFFFAOYSA-K silver phosphate Chemical compound [Ag+].[Ag+].[Ag+].[O-]P([O-])([O-])=O FJOLTQXXWSRAIX-UHFFFAOYSA-K 0.000 title claims abstract description 27
- 229940019931 silver phosphate Drugs 0.000 title claims abstract description 27
- 229910000161 silver phosphate Inorganic materials 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 15
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 8
- 229940113115 polyethylene glycol 200 Drugs 0.000 claims abstract description 8
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 claims abstract description 8
- 229940071536 silver acetate Drugs 0.000 claims abstract description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000005119 centrifugation Methods 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 abstract description 9
- 230000001699 photocatalysis Effects 0.000 abstract description 7
- 239000006227 byproduct Substances 0.000 abstract description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 11
- 229940043267 rhodamine b Drugs 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 3
- 238000002003 electron diffraction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002957 persistent organic pollutant Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- CVAVMIODJQHEEH-UHFFFAOYSA-O rhodamine B(1+) Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O CVAVMIODJQHEEH-UHFFFAOYSA-O 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
本发明提供一种磷酸银光催化剂的制备方法,属于催化剂领域。所述制备方法,包括如下步骤:(1)在聚乙二醇200中依次加入乙酸银、磷酸水溶液,调节pH至5-6,在搅拌状态下反应;(2)步骤(1)所述反应结束后,离心取沉淀,洗涤,干燥后即得磷酸银光催化剂。本发明磷酸银光催化剂的制备方法简单、成本低、节能环保且无副产物。采用本发明方法,得到磷酸银光催化剂为新颖的管状微孔结构,其光催化活性较高。
The invention provides a method for preparing a silver phosphate photocatalyst, which belongs to the field of catalysts. The preparation method includes the following steps: (1) adding silver acetate and phosphoric acid aqueous solution to polyethylene glycol 200 in sequence, adjusting the pH to 5-6, and reacting under stirring; (2) the reaction described in step (1) After the end, centrifuge to take the precipitate, wash and dry to obtain the silver phosphate photocatalyst. The preparation method of the silver phosphate photocatalyst of the present invention is simple, low in cost, energy-saving and environment-friendly, and has no by-products. By adopting the method of the invention, the silver phosphate photocatalyst is obtained as a novel tubular microporous structure, and its photocatalytic activity is relatively high.
Description
技术领域 technical field
本发明涉及催化剂领域,具体涉及一种磷酸银光催化剂的制备方法。 The invention relates to the field of catalysts, in particular to a method for preparing a silver phosphate photocatalyst.
背景技术 Background technique
人类社会和经济可持续发展日益面临能源短缺和环境恶化两大问题,正处于高速发展阶段的中国,对清洁能源及环境保护技术的研发需求尤为紧迫。理论上,利用太阳光能量制取氢能源及降解环境中的有机污染物是解决上述问题的理想途径,发展相关技术和新材料有广阔前景(张彤,2009)。 The sustainable development of human society and economy is increasingly confronted with the two major problems of energy shortage and environmental degradation. China, which is in a stage of rapid development, has a particularly urgent demand for research and development of clean energy and environmental protection technologies. Theoretically, using sunlight energy to produce hydrogen energy and degrade organic pollutants in the environment is an ideal way to solve the above problems, and the development of related technologies and new materials has broad prospects (Zhang Tong, 2009).
1972年日本科学家Fujishima等发现TiO2单晶电级可以实现光催化分解水(FujishimaA,1972),后来又发现纳米TiO2具有光催化降解有机物的能力,使其成为科学家重力关注的热点材料。但TiO2的太阳光吸收区间仅局限于紫外光区,而这部分光仅占照射到地面太阳光谱的5%,且TiO2量子效率较低,综合起来太阳能的利用效率仅在1%左右,利用效率很低。 In 1972, Japanese scientist Fujishima et al. discovered that TiO2 single-crystal electrodes can realize photocatalytic water splitting (FujishimaA, 1972), and later discovered that nano-TiO2 has the ability to photocatalytically degrade organic matter, making it a hot material that scientists are concerned about. However, the solar light absorption range of TiO2 is limited to the ultraviolet region, and this part of light only accounts for 5% of the solar spectrum irradiated on the ground, and the quantum efficiency of TiO2 is low, and the utilization efficiency of solar energy is only about 1%. very low.
磷酸银作为一种全新的半导体光催化材料,具有良好的可见光响应能力及优秀的光催化降解效率。近年磷酸银已引起社会各界的广泛关注,有望成为能够实现工业化生产和实际应用的新型光催化环保材料。据研究表明,其在可见光照射下的水分解性能和有机涂料分解性能是目前所认知光催化剂的数十倍。 As a new semiconductor photocatalytic material, silver phosphate has good visible light response ability and excellent photocatalytic degradation efficiency. In recent years, silver phosphate has attracted widespread attention from all walks of life, and it is expected to become a new type of photocatalytic environmental protection material that can realize industrial production and practical application. According to research, its water splitting performance and organic coating decomposition performance under visible light irradiation are dozens of times that of the currently known photocatalysts.
磷酸银光催化降解有机污染物的效率与晶体形貌有一定关系,与无规则的磷酸银颗粒相比,有形貌的磷酸银光催化剂具有更好的有机污染物降解效率。因此,开发具有特殊形貌的磷酸银光催化剂以提高其光催化活性及探寻简便环保的合成方法成为研究的重点。 The efficiency of silver phosphate photocatalytic degradation of organic pollutants has a certain relationship with the crystal morphology. Compared with irregular silver phosphate particles, the silver phosphate photocatalyst with morphology has better degradation efficiency of organic pollutants. Therefore, the development of silver phosphate photocatalysts with special morphology to improve their photocatalytic activity and to explore simple and environmentally friendly synthesis methods has become the focus of research.
发明内容 Contents of the invention
本发明的目的是提供一种磷酸银光催化剂的制备方法,该方法简单易行、安全环保,得到的磷酸银光催化剂结构新颖,光催化活性高。 The purpose of the present invention is to provide a preparation method of silver phosphate photocatalyst, which is simple, safe and environment-friendly, and the obtained silver phosphate photocatalyst has novel structure and high photocatalytic activity.
一种磷酸银光催化剂的制备方法,包括如下步骤: A preparation method of silver phosphate photocatalyst, comprising the steps of:
(1)在聚乙二醇200中依次加入乙酸银、磷酸水溶液,调节pH至5-6,在搅拌状态下反应; (1) Add silver acetate and phosphoric acid aqueous solution in sequence to polyethylene glycol 200, adjust the pH to 5-6, and react under stirring;
(2)步骤(1)所述反应结束后,离心取沉淀,洗涤,干燥后即得磷酸银光催化剂。 (2) After the reaction in step (1), the precipitate is collected by centrifugation, washed and dried to obtain the silver phosphate photocatalyst.
调节pH的物质为乌洛托品。 The substance that adjusts pH is hexatropine.
所述乙酸银与磷酸水溶液中磷酸的摩尔比30:9~30:20。 The molar ratio of the silver acetate to phosphoric acid in the phosphoric acid aqueous solution is 30:9˜30:20.
所述聚乙二醇200与磷酸体积比为1000:1~400: 1。 The volume ratio of polyethylene glycol 200 to phosphoric acid is 1000:1 to 400:1.
所述洗涤方法为:依次用无水乙醇和水洗涤。 The washing method is: washing with absolute ethanol and water in sequence.
所述干燥温度为60~80 ℃,干燥时间为6~8小时。 The drying temperature is 60-80°C, and the drying time is 6-8 hours.
有益效果:本发明磷酸银光催化剂的制备方法简单、成本低、节能环保且无副产物。采用本发明方法,得到磷酸银光催化剂为新颖的管状微孔结构,其光催化活性较高。 Beneficial effects: the preparation method of the silver phosphate photocatalyst of the present invention is simple, low in cost, energy-saving and environment-friendly, and has no by-products. By adopting the method of the invention, the silver phosphate photocatalyst is obtained as a novel tubular microporous structure, and its photocatalytic activity is relatively high.
附图说明 Description of drawings
图1为光催化剂1放大1800倍的电子显微镜形貌图。 FIG. 1 is a 1800-fold magnified electron microscope topography of photocatalyst 1.
图2为光催化剂1放大15000倍的电子显微镜形貌图。 FIG. 2 is a 15,000-fold magnified electron microscope topography of photocatalyst 1.
图3为光催化剂1的X射线电子衍射图像(XRD)。 FIG. 3 is an X-ray electron diffraction image (XRD) of photocatalyst 1. FIG.
图4显示光催化剂1催化条件下或无催化剂条件下罗丹明B的分解过程,其中C0表示罗丹明B的初始浓度,C表示不同时刻罗丹明B的浓度。 Figure 4 shows the decomposition process of rhodamine B under the catalytic condition of photocatalyst 1 or without catalyst, where C0 represents the initial concentration of rhodamine B, and C represents the concentration of rhodamine B at different times.
具体实施方式 Detailed ways
实施例1Example 1
取40ml的聚乙二醇200,倒入烧杯中,在搅拌条件下依次加入0.002mol乙酸银和41μl、质量百分浓度为85%的磷酸水溶液(磷酸含量为0.0006mol) ,采用乌洛托品调节溶液pH至5,搅拌状态下反应十分钟。反应结束后,离心取沉淀,依次用无水乙醇和蒸馏水洗涤,在60℃条件下干燥8小时,即得到光催化剂1。 Take 40ml of polyethylene glycol 200, pour it into a beaker, add 0.002mol of silver acetate and 41μl of phosphoric acid aqueous solution (phosphoric acid content: 0.0006mol) with a mass percent concentration of 85% under stirring conditions, and use urotropine Adjust the pH of the solution to 5, and react for ten minutes under stirring. After the reaction, the precipitate was collected by centrifugation, washed with absolute ethanol and distilled water in sequence, and dried at 60° C. for 8 hours to obtain photocatalyst 1 .
从图3可以看出,光催化剂1为纯相的磷酸银。从图1和图2可以看出光催化剂1为大量纳米小颗粒组装而成的空心管状微孔结构。 It can be seen from FIG. 3 that the photocatalyst 1 is a pure phase of silver phosphate. It can be seen from Fig. 1 and Fig. 2 that the photocatalyst 1 is a hollow tubular microporous structure assembled by a large number of nanometer particles.
实施例2Example 2
取40ml的聚乙二醇200,倒入烧杯中,在搅拌条件下依次加入0.002mol乙酸银和89μl、质量百分浓度为85%的磷酸水溶液(磷酸含量为0.0013mol),采用乌洛托品调节溶液pH至5.5,搅拌状态下反应十分钟。反应结束后,离心取沉淀,依次用无水乙醇和蒸馏水洗涤,在70℃条件下干燥7小时,即得到光催化剂2。 Take 40ml of polyethylene glycol 200, pour it into a beaker, add 0.002mol of silver acetate and 89μl of phosphoric acid aqueous solution with a concentration of 85% by mass (phosphoric acid content is 0.0013mol) under stirring conditions, and use urotropine Adjust the pH of the solution to 5.5, and react for ten minutes under stirring. After the reaction, the precipitate was collected by centrifugation, washed with absolute ethanol and distilled water in sequence, and dried at 70° C. for 7 hours to obtain photocatalyst 2 .
从光催化剂2的X射线电子衍射图像可以看出,光催化剂2为纯相的磷酸银。从光催化剂2的电子显微镜形貌图可以看出,光催化剂2为大量纳米小颗粒组装而成的空心管状微孔结构。 It can be seen from the X-ray electron diffraction image of the photocatalyst 2 that the photocatalyst 2 is a pure phase of silver phosphate. From the electron microscope topography of photocatalyst 2, it can be seen that photocatalyst 2 is a hollow tubular microporous structure assembled by a large number of nanometer particles.
实施例3Example 3
取40ml的聚乙二醇200,倒入烧杯中,在搅拌条件下依次加入0.002mol乙酸银和68μl、质量百分浓度为85%的磷酸水溶液(磷酸含量为0.001mol),采用乌洛托品调节溶液pH至6,搅拌状态下反应十分钟。反应结束后,离心取沉淀,依次用无水乙醇和蒸馏水洗涤,在80℃条件下干燥8小时,即得到催化剂3。 Take 40ml of polyethylene glycol 200, pour it into a beaker, add 0.002mol of silver acetate and 68μl of phosphoric acid aqueous solution with a concentration of 85% by mass (phosphoric acid content is 0.001mol) under stirring conditions, and use urotropine Adjust the pH of the solution to 6, and react for ten minutes under stirring. After the reaction, the precipitate was collected by centrifugation, washed successively with absolute ethanol and distilled water, and dried at 80° C. for 8 hours to obtain catalyst 3 .
从光催化剂3的X射线电子衍射图像可以看出,光催化剂3为纯相的磷酸银。从光催化剂3的电子显微镜形貌图可以看出,光催化剂3为大量纳米小颗粒组装而成的空心管状微孔结构。 It can be seen from the X-ray electron diffraction image of the photocatalyst 3 that the photocatalyst 3 is a pure phase of silver phosphate. From the electron microscope topography of photocatalyst 3, it can be seen that photocatalyst 3 is a hollow tubular microporous structure assembled by a large number of small nanoparticles.
实施例4 采用各催化剂降解罗丹明BEmbodiment 4 uses each catalyst to degrade rhodamine B
分别采用光催化剂1、2和3用催化罗丹明B降解。称取0.1g催化剂1、2或3加入200mL罗丹明B溶液(5~10mg/L),避光搅拌半小时,使罗丹明B溶液在催化剂表面达到吸附/脱附平衡。然后开启光源进行光催化反应,每隔3分钟取5ml反应液,经离心分离后,上清液用分光光度计检测。反应的光源为氙灯,透过紫外过滤滤光片,以确保入射光为可见光(420nm﹤λ﹤800nm)。其中光催化剂1催化罗丹明B降解的情况如图3所示。从图3可以看出,没有加催化剂时,罗丹明B显示出极小的降解趋势,而加入本发明光催化剂1后,罗丹明B在10分钟内基本完全降解。催化剂2和3在催化罗丹明B降解方面的效果也很好。 Photocatalysts 1, 2 and 3 were used to catalyze the degradation of Rhodamine B, respectively. Weigh 0.1g of catalyst 1, 2 or 3 and add 200mL rhodamine B solution (5~10mg/L), and stir in the dark for half an hour, so that the rhodamine B solution reaches adsorption/desorption equilibrium on the surface of the catalyst. Then turn on the light source to carry out the photocatalytic reaction, take 5ml of the reaction solution every 3 minutes, after centrifugation, the supernatant is detected by a spectrophotometer. The light source for the reaction is a xenon lamp, which passes through an ultraviolet filter to ensure that the incident light is visible light (420nm﹤λ﹤800nm). The degradation of Rhodamine B catalyzed by photocatalyst 1 is shown in Fig. 3 . It can be seen from Fig. 3 that when no catalyst is added, Rhodamine B shows a minimal degradation tendency, but after adding the photocatalyst 1 of the present invention, Rhodamine B is substantially completely degraded within 10 minutes. Catalysts 2 and 3 also performed well in catalyzing the degradation of Rhodamine B.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310246213.8A CN103272622B (en) | 2013-06-20 | 2013-06-20 | Preparation method of silver phosphate photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310246213.8A CN103272622B (en) | 2013-06-20 | 2013-06-20 | Preparation method of silver phosphate photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103272622A CN103272622A (en) | 2013-09-04 |
CN103272622B true CN103272622B (en) | 2015-03-11 |
Family
ID=49055302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310246213.8A Expired - Fee Related CN103272622B (en) | 2013-06-20 | 2013-06-20 | Preparation method of silver phosphate photocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103272622B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106268885B (en) * | 2016-07-15 | 2018-10-26 | 安徽大学 | A kind of preparation method of threadiness silver orthophosphate-titanium dioxide composite photocatalyst |
CN106540723B (en) * | 2016-10-19 | 2019-01-29 | 常州大学 | A kind of preparation method of thiophosphoric acid silver catalyst |
CN106378164A (en) * | 2016-10-19 | 2017-02-08 | 常州大学 | Preparation method of defect-rich silver phosphate photocatalyst |
CN106378168A (en) * | 2016-10-19 | 2017-02-08 | 常州大学 | Preparation method of manganese phosphate/yttrium phosphate composite catalyst |
CN106622311B (en) * | 2016-12-27 | 2019-03-22 | 常州大学 | One kind having capillarity silver phosphate photocatalyst preparation method |
CN107803221B (en) * | 2017-11-23 | 2020-07-03 | 郑州圣莱特空心微珠新材料有限公司 | Floating type silver phosphate-based visible-light-driven photocatalyst and preparation method and application thereof |
CN109806895A (en) * | 2019-03-01 | 2019-05-28 | 东华大学 | A kind of tetragonal claw-shaped silver phosphate photocatalyst and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009078211A (en) * | 2007-09-26 | 2009-04-16 | National Institute For Materials Science | photocatalyst |
CN101648139A (en) * | 2009-09-03 | 2010-02-17 | 福州大学 | Novel visible catalyst-silver phosphate and preparation method thereof |
CN102698782A (en) * | 2012-06-25 | 2012-10-03 | 武汉理工大学 | Dendrite silver phosphate visible light catalyst and preparation method thereof |
CN102826531A (en) * | 2012-09-14 | 2012-12-19 | 华东理工大学 | Preparation method of nano silver phosphate catalyst driven by visible light |
-
2013
- 2013-06-20 CN CN201310246213.8A patent/CN103272622B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009078211A (en) * | 2007-09-26 | 2009-04-16 | National Institute For Materials Science | photocatalyst |
CN101648139A (en) * | 2009-09-03 | 2010-02-17 | 福州大学 | Novel visible catalyst-silver phosphate and preparation method thereof |
CN102698782A (en) * | 2012-06-25 | 2012-10-03 | 武汉理工大学 | Dendrite silver phosphate visible light catalyst and preparation method thereof |
CN102826531A (en) * | 2012-09-14 | 2012-12-19 | 华东理工大学 | Preparation method of nano silver phosphate catalyst driven by visible light |
Non-Patent Citations (1)
Title |
---|
Characterisation of nanostructured silver orthophosphate;Marykutty Thomas et al.;《MATERIALS LETTERS》;20021031;第56卷;386-392 * |
Also Published As
Publication number | Publication date |
---|---|
CN103272622A (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103272622B (en) | Preparation method of silver phosphate photocatalyst | |
CN107866234B (en) | High-activity ZnIn2S4/TiO2Preparation method of Z-system catalyst material | |
CN103433060B (en) | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application | |
CN103071513B (en) | Hydrogen-production photocatalyst MoS2/ZnIn2S4 and preparation method thereof | |
CN102500388B (en) | Copper and bismuth co-doped nano titanium dioxide photocatalyst and preparation and application thereof | |
CN102824921B (en) | A kind of preparation method of Ag2S/Ag3PO4 composite photocatalyst | |
CN103934011B (en) | A kind of biomimetic synthesis method of high-activity nano bismuth phosphate photocatalyst | |
CN103638922B (en) | Preparation method of mesoporous tungsten trioxide/reduction-oxidation graphene composite photocatalyst | |
CN108525667A (en) | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide | |
CN104117367B (en) | A kind of BiOBr/RGO composite aerogel and its preparation method and application | |
CN101791565A (en) | TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof | |
CN103769213A (en) | Preparation method for phosphor-doped graphite-phase carbon nitride visible-light catalyst | |
CN102698739A (en) | A preparation method of solar light-responsive mesoporous Bi2WO6 microspheres | |
CN106179418B (en) | A kind of preparation method of load type double-metal co-doped nano photochemical catalyst | |
CN104056620A (en) | Visible-light catalyst and preparation method and application thereof | |
CN103933967A (en) | Biomimetic synthesis method of nanometer bismuth molybdate visible-light-induced photocatalyst | |
CN103785429B (en) | A kind of silver orthophosphate/Graphene/titanic oxide nano compound material and preparation method | |
CN104844423A (en) | Application of MIL-100 (Fe) in preparation of phenol through photocatalytic hydroxylation of benzene | |
CN104624211A (en) | Preparation method of complex photocatalyst responsive to visible light and application of complex photocatalyst | |
CN103521244B (en) | A kind of material CdS/Sr1.6Zn0.4Nb2O7 photocatalytic decomposition of water to produce hydrogen and its preparation method | |
CN105854912A (en) | A kind of BiPO4-WO3 composite photocatalyst and preparation method thereof | |
CN106179419B (en) | A kind of preparation method of two-dimensional magnetic nano-photocatalyst | |
CN102962103A (en) | Preparation and Application of Conductive Polymer Polypyrrole Modified TiO2 | |
CN107744814A (en) | A kind of preparation method and application of composite photo-catalyst | |
CN103521205A (en) | A method for preparing high photocatalytic activity core-shell structure TiO2 material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150311 Termination date: 20150620 |
|
EXPY | Termination of patent right or utility model |