CN102994089A - Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure - Google Patents

Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure Download PDF

Info

Publication number
CN102994089A
CN102994089A CN 201210535015 CN201210535015A CN102994089A CN 102994089 A CN102994089 A CN 102994089A CN 201210535015 CN201210535015 CN 201210535015 CN 201210535015 A CN201210535015 A CN 201210535015A CN 102994089 A CN102994089 A CN 102994089A
Authority
CN
China
Prior art keywords
mmol
core
nanocrystals
baf
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201210535015
Other languages
Chinese (zh)
Inventor
陈大钦
王元生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN 201210535015 priority Critical patent/CN102994089A/en
Publication of CN102994089A publication Critical patent/CN102994089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明公布一种超小核壳结构碱土氟化物纳米晶的制备方法。以可溶性钡离子盐和稀土离子盐为原料,在乙醇和油酸混合溶剂中,于160℃温度下进行溶剂热反应12小时后,获得~3纳米的Yb/Tm: BaF2纳米球;随后将合成的纳米球和三氟乙酸锶、三氟乙酸稀土盐一起加入至油酸和十八烯混合溶剂中,在惰性气氛保护下于260 - 310℃反应1 - 6小时后,可得到超小(~7纳米)Yb/Tm: BaF2Ln/Nd: SrF2核壳结构纳米晶。所得核壳结构纳米晶分散性好、形状均一、粒径分布窄、尺度超小,具有近红外-近红外上转换和近红外-近红外下转移发光特性,可望在生物标记领域得到广泛应用。

Figure 201210535015

The invention discloses a preparation method of an ultra-small core-shell structure alkaline earth fluoride nanocrystal. Using soluble barium ion salts and rare earth ion salts as raw materials, in a mixed solvent of ethanol and oleic acid, after solvothermal reaction at 160 °C for 12 hours, ~3 nm Yb/Tm: BaF 2 nanospheres were obtained; The synthesized nanospheres, strontium trifluoroacetate and rare earth trifluoroacetate are added to a mixed solvent of oleic acid and octadecene, and after reacting at 260-310°C for 1-6 hours under the protection of an inert atmosphere, ultra-small ( ~7 nm) Yb/Tm: BaF 2 Ln/Nd: SrF 2 core-shell structure nanocrystals. The obtained core-shell nanocrystals have good dispersion, uniform shape, narrow particle size distribution, and ultra-small size, and have near-infrared-near-infrared up-conversion and near-infrared-near-infrared down-transfer luminescence characteristics, and are expected to be widely used in the field of biomarkers .

Figure 201210535015

Description

超小核壳结构碱土氟化物纳米晶的制备方法Preparation method of ultra-small core-shell structure alkaline earth fluoride nanocrystals

技术领域 technical field

本发明属于无机材料制备技术领域,涉及一种具有近红外-近红外双模发光特性的超小(~7纳米)核壳结构碱土氟化物纳米晶的制备方法。The invention belongs to the technical field of preparation of inorganic materials, and relates to a preparation method of an ultra-small (~7 nanometer) core-shell structure alkaline earth fluoride nanocrystal with near-infrared-near-infrared dual-mode luminescence characteristics.

技术背景 technical background

近年来,稀土离子掺杂发光纳米晶由于在生物标记领域具有广泛的应用前景而受到科学界的高度关注。发光纳米晶在生物体内代谢的难易程度是其能否作为生物标记材料的关键指标之一。研究表明当尺度小于10纳米时,纳米晶比较容易从生物体内***出来。但是,尺度越小,纳米晶比表面积越大,掺杂的稀土离子在表面的几率越高,导致其发光强度明显下降。为了克服表面淬灭,有效的手段之一是构造核壳结构纳米晶,也就是在核纳米晶表面生长一惰性壳层来保护稀土在核层中的发光。在传统的发光核壳结构纳米晶合成方法中,一般是通过精细调整前驱物含量、反应溶剂、表面活性剂、反应时间以及反应温度等来实现对产物的可控合成。这种办法既复杂又繁琐,且很难实现小于10纳米的核壳结构纳米晶的制备。In recent years, rare earth ion-doped luminescent nanocrystals have attracted great attention from the scientific community due to their broad application prospects in the field of biomarkers. The ease of metabolism of luminescent nanocrystals in organisms is one of the key indicators of whether they can be used as biomarker materials. Studies have shown that when the size is less than 10 nanometers, nanocrystals are easier to excrete from the organism. However, the smaller the scale, the larger the specific surface area of the nanocrystal, and the higher the probability of the doped rare earth ions on the surface, resulting in a significant decrease in its luminous intensity. In order to overcome surface quenching, one of the effective means is to construct core-shell structure nanocrystals, that is, to grow an inert shell layer on the surface of core nanocrystals to protect the luminescence of rare earths in the core layer. In the traditional synthesis method of luminescent core-shell structure nanocrystals, the controllable synthesis of the product is generally achieved by finely adjusting the content of precursors, reaction solvents, surfactants, reaction time, and reaction temperature. This method is complicated and cumbersome, and it is difficult to realize the preparation of core-shell structure nanocrystals smaller than 10 nanometers.

本发明提出一种通过稀土离子掺杂实现对发光核壳结构碱土氟化物纳米晶尺寸进行调控的方法。在壳层生长过程中,通过掺入稀土离子,可以调控碱土氟化物壳层厚度以及控制最终得到的核壳结构纳米晶的尺度,进而获得具有近红外-近红外上转换和近红外-近红外下转移双模发光、单分散、超小(~7 纳米)核壳结构碱土氟化物纳米晶。The invention proposes a method for regulating the nanocrystal size of alkaline earth fluoride with a luminescent core-shell structure by doping rare earth ions. During the growth process of the shell layer, by doping rare earth ions, the thickness of the alkaline earth fluoride shell layer and the size of the final core-shell structure nanocrystal can be controlled, thereby obtaining near-infrared-near-infrared upconversion and near-infrared-near-infrared Down-transfer dual-mode luminescence, monodisperse, ultra-small (~7 nm) core-shell structure alkaline earth fluoride nanocrystals.

发明内容Contents of the invention

本发明提出一种通过稀土离子掺杂实现对发光核壳结构碱土氟化物纳米晶尺度进行调控的方法,目的在于制备出具有高效近红外-近红外上转换和下转移双模发光特性的新型超小(~7纳米)核壳结构纳米材料。The present invention proposes a method for regulating the size of luminescent core-shell structure alkaline earth fluoride nanocrystals by doping rare earth ions. Small (~7 nm) core-shell structured nanomaterials.

本发明的技术方案如下:Technical scheme of the present invention is as follows:

(1)将0.40 mmol 钡离子盐、0.09 mmol 镱离子盐和0.01 mmol铥离子盐(所述的离子盐为:硝酸盐、氯酸盐或醋酸盐)加入到10mL去离子水,搅拌形成透明澄清溶液后,逐滴加入到10 mL乙醇、10mL油酸和2.5 g油酸钠的混合液中,充分搅拌后移入到40 mL水热釜中,随后滴加入1.0 mol/L的氢氟酸水溶液4 mL,最后在160℃温度下进行溶剂热反应,保温时间为12小时。将所得产物用乙醇和环己烷混合液洗涤后,于40~80℃烘干后得到Yb/Tm: BaF2核纳米晶。(1) Add 0.40 mmol of barium ion salt, 0.09 mmol of ytterbium ion salt and 0.01 mmol of thulium ion salt (the ionic salt is: nitrate, chlorate or acetate) to 10mL of deionized water, stir to form a transparent After the solution is clarified, add it dropwise to a mixture of 10 mL ethanol, 10 mL oleic acid and 2.5 g sodium oleate, stir well and transfer it to a 40 mL hydrothermal kettle, then add 1.0 mol/L hydrofluoric acid aqueous solution dropwise 4 mL, and finally carry out solvothermal reaction at 160°C for 12 hours. The obtained product is washed with a mixture of ethanol and cyclohexane, and dried at 40-80° C. to obtain Yb/Tm: BaF 2 core nanocrystals.

(2)将步骤(1)所获得Yb/Tm: BaF2核纳米晶、0.40 mmol三氟乙酸锶Sr(CF3COO)2、0.09 mmol三氟乙酸稀土化合物Ln(CF3COO)(其中Ln可以是La、Ce、Pr、Sm、Eu、Gd、Y、Tb、Dy、Ho、Er、Tm、Yb或Lu中任何一种元素)和0.01 mmol三氟乙酸钕Nd(CF3COO)3加入到10 mL油酸和10 mL十八烯中,搅拌形成透明澄清溶液后移入到100mL三颈瓶中,随后在惰性(氮气或氩气)气氛保护下加热至100℃并保温30分钟除水除氧,最后在惰性(氮气或氩气)气氛保护下继续加热至260 - 310℃,并保温1 - 6小时进行反应。将所得产物用乙醇和环己烷混合液洗涤后,于40 - 80℃烘干后得到Yb/Tm: BaF2Ln/Nd: SrF2核壳结构纳米晶。(2) Yb/Tm: BaF 2 core nanocrystals obtained in step (1), 0.40 mmol strontium trifluoroacetate Sr(CF 3 COO) 2 , 0.09 mmol trifluoroacetic acid rare earth compound Ln(CF 3 COO) 3 (where Ln can be any one of La, Ce, Pr, Sm, Eu, Gd, Y, Tb, Dy, Ho, Er, Tm, Yb or Lu) and 0.01 mmol Nd(CF 3 COO) 3 Add to 10 mL oleic acid and 10 mL octadecene, stir to form a transparent and clear solution, then transfer to a 100 mL three-necked bottle, then heat to 100°C under the protection of an inert (nitrogen or argon) atmosphere and keep it warm for 30 minutes to remove water Remove oxygen, and finally continue heating to 260-310°C under the protection of an inert (nitrogen or argon) atmosphere, and keep it warm for 1-6 hours to carry out the reaction. The obtained product is washed with a mixture of ethanol and cyclohexane, and dried at 40-80° C. to obtain Yb/Tm: BaF 2 Ln/Nd: SrF 2 core-shell structure nanocrystals.

粉未X射线衍射分析透射电子显微镜观察表明:上述合成的Yb/Tm: BaF2 核纳米晶为纯立方结构相,其尺度为3纳米左右,形状为球状;以Yb/Tm: BaF2 纳米晶为核,制备出来的Yb/Tm: BaF2 Ln/Nd:SrF2(Ln=La、Ce、Pr、Sm、Eu、Gd、Y、Tb、Dy、Ho、Er、Tm、Yb或Lu)核壳结构纳米晶仍为纯立方相,其尺度为7纳米左右,形状为立方块。所得超小核壳结构纳米晶在980纳米激光照射下,可在750 - 800纳米波段范围内实现上转换发光,在796纳米激发光照射下,可在920 - 1120纳米波段范围内实现下转移发光。Powder X-ray diffraction analysis and transmission electron microscope observation show that: the Yb/Tm synthesized above: BaF 2 nuclear nanocrystals are pure cubic structure phases, the scale is about 3 nanometers, and the shape is spherical; Yb/Tm: BaF 2 nanocrystals As the nucleus, the prepared Yb/Tm: BaF 2 Ln/Nd:SrF 2 (Ln=La, Ce, Pr, Sm, Eu, Gd, Y, Tb, Dy, Ho, Er, Tm, Yb or Lu) nucleus The shell structure nanocrystal is still a pure cubic phase, its scale is about 7 nanometers, and its shape is cubic. The obtained ultra-small core-shell structure nanocrystals can realize up-conversion luminescence in the range of 750-800 nm under the irradiation of 980-nm laser, and can realize down-transfer luminescence in the range of 920-1120 nm under the irradiation of 796-nm excitation light .

本发明具有制备技术简单、成本低、产率高、生产易于放大等优点。所得产物分散性好、形状均一、粒径分布窄、尺度超小,具有近红外-近红外双模发光特性,可望在生物标记领域得到广泛应用。The invention has the advantages of simple preparation technology, low cost, high yield, easy scale-up of production and the like. The obtained product has good dispersibility, uniform shape, narrow particle size distribution, ultra-small size, and near-infrared-near-infrared dual-mode luminescence characteristics, and is expected to be widely used in the field of biomarkers.

附图说明 Description of drawings

图1是实例1中Yb/Tm: BaF2 核纳米晶的透射电子显微镜明场像;Fig. 1 is Yb/Tm in the example 1: BaF The transmission electron microscope bright field image of nuclear nanocrystal;

图2是实例1中Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶的透射电子显微镜明场像;Fig. 2 is Yb/Tm in example 1: BaF 2 Gd/Nd: SrF 2 bright field image of transmission electron microscope of core-shell structure nanocrystal;

图3是实例1中Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶的上转换发光谱;Fig. 3 is Yb/Tm in the example 1: BaF 2 Gd/Nd: SrF 2 The up-conversion emission spectrum of the core-shell structure nanocrystal;

图4是实例1中Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶的下转移发光谱。Fig. 4 is the down-shift emission spectrum of Yb/Tm: BaF 2 Gd/Nd: SrF 2 core-shell structure nanocrystals in Example 1.

具体实施方式 Detailed ways

实例1:将0.40 mmol 硝酸钡、0.09 mmol 硝酸镱和0.01 mmol硝酸铥加入到10 mL去离子水,搅拌形成透明澄清溶液后,逐滴加入到10 mL乙醇、10 mL油酸和2.5 g油酸钠的混合液中,充分搅拌后移入到40 mL水热釜中,随后滴加入1.0 mol/L的氢氟酸水溶液4 mL,最后在160℃温度下进行溶剂热反应,保温时间为12小时。将所得纳米晶用乙醇和环己烷混合液洗涤后,于60℃烘干后得到Yb/Tm: BaF2核纳米晶。将所获得的Yb/Tm: BaF2核纳米晶、0.40 mmol三氟乙酸锶Sr(CF3COO)2、0.09 mmol三氟乙酸钆Gd(CF3COO)3和0.01mmol三氟乙酸钕Nd(CF3COO)3加入到10 mL油酸和10 mL十八烯中,搅拌形成透明澄清溶液后移入到100 mL三颈瓶中,随后在氮气气氛保护下加热至100℃并保温30分钟除水除氧,最后在氮气气氛保护下继续加热至260℃,并保温6小时。将所得产物用乙醇和环己烷混合液洗涤后,于60℃烘干后得到Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶。Example 1: Add 0.40 mmol of barium nitrate, 0.09 mmol of ytterbium nitrate and 0.01 mmol of thulium nitrate to 10 mL of deionized water, stir to form a transparent and clear solution, then add dropwise to 10 mL of ethanol, 10 mL of oleic acid and 2.5 g of oleic acid Mixed solution of sodium, stirred thoroughly and transferred to a 40 mL hydrothermal kettle, then added dropwise 4 mL of 1.0 mol/L hydrofluoric acid aqueous solution, and finally carried out solvothermal reaction at 160°C for 12 hours. The obtained nanocrystals were washed with a mixture of ethanol and cyclohexane, and then dried at 60° C. to obtain Yb/Tm: BaF 2 core nanocrystals. The obtained Yb/Tm: BaF 2 core nanocrystals, 0.40 mmol of strontium trifluoroacetate Sr(CF 3 COO) 2 , 0.09 mmol of gadolinium trifluoroacetate Gd(CF 3 COO) 3 and 0.01 mmol of neodymium trifluoroacetate Nd ( CF 3 COO) 3 was added to 10 mL oleic acid and 10 mL octadecene, stirred to form a transparent and clear solution, then transferred to a 100 mL three-neck flask, and then heated to 100 °C under the protection of nitrogen atmosphere and kept for 30 minutes to remove water Deoxygenation, and finally continue heating to 260° C. under the protection of nitrogen atmosphere, and keep it warm for 6 hours. The obtained product is washed with a mixture of ethanol and cyclohexane, and dried at 60° C. to obtain Yb/Tm: BaF 2 Gd/Nd: SrF 2 core-shell structure nanocrystals.

透射电子显微镜观察表明:上述合成的Yb/Tm: BaF2 核纳米晶为3纳米左右球状颗粒(图1);以Yb/Tm: BaF2 纳米球为核,合成出来的Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶7纳米左右立方块(图2)。光谱测试表明:所得超小核壳结构纳米晶在980纳米激光照射下,可在750 - 800纳米波段范围内实现上转换发光(图3),在796纳米激光照射下,可在920 - 1120纳米波段范围内实现下转移发光(图4)。The transmission electron microscope observation shows that the Yb/Tm: BaF 2 core nanocrystals synthesized above are spherical particles of about 3 nanometers (Figure 1); the Yb/Tm: BaF 2 Gd/Nd: SrF 2 core-shell structure nanocrystals around 7 nm cubic (Figure 2). Spectral tests show that the obtained ultra-small core-shell nanocrystals can achieve up-conversion luminescence in the 750-800 nm wavelength range under 980-nm laser irradiation (Figure 3), and can achieve up-conversion luminescence in the 920-1120 nm range under 796-nm laser irradiation. The down-transferred luminescence is realized in the wavelength range (Fig. 4).

实例2:将0.40 mmol 硝酸钡、0.09 mmol 硝酸镱和0.01 mmol硝酸铥加入到10 mL去离子水,搅拌形成透明澄清溶液后,逐滴加入到10 mL乙醇、10 mL油酸和2.5 g油酸钠的混合液中,充分搅拌后移入到40 mL水热釜中,随后滴加入1.0 mol/L的氢氟酸水溶液4 mL,最后在160℃温度下进行溶剂热反应,保温时间为12小时。将所得纳米晶用乙醇和环己烷混合液洗涤后,于60℃烘干后得到Yb/Tm: BaF2核纳米晶。将所获得的Yb/Tm: BaF2核纳米晶、0.40 mmol三氟乙酸锶Sr(CF3COO)2、0.09 mmol三氟乙酸钆Gd(CF3COO)3和0.01mmol三氟乙酸钕Nd(CF3COO)3加入到10 mL油酸和10 mL十八烯中,搅拌形成透明澄清溶液后移入到100 mL三颈瓶中,随后在氮气气氛保护下加热至100℃并保温30分钟除水除氧,最后在氮气气氛保护下继续加热至280℃,并保温3小时。将所得产物用乙醇和环己烷混合液洗涤后,于60℃烘干后得到超小(~7纳米)Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶。光谱测试表明所获纳米晶可产生近红外-近红外双模发光。Example 2: Add 0.40 mmol of barium nitrate, 0.09 mmol of ytterbium nitrate and 0.01 mmol of thulium nitrate to 10 mL of deionized water, stir to form a transparent and clear solution, then add dropwise to 10 mL of ethanol, 10 mL of oleic acid and 2.5 g of oleic acid Mixed solution of sodium, stirred thoroughly and transferred to a 40 mL hydrothermal kettle, then added dropwise 4 mL of 1.0 mol/L hydrofluoric acid aqueous solution, and finally carried out solvothermal reaction at 160°C for 12 hours. The obtained nanocrystals were washed with a mixture of ethanol and cyclohexane, and then dried at 60° C. to obtain Yb/Tm: BaF 2 core nanocrystals. The obtained Yb/Tm: BaF 2 core nanocrystals, 0.40 mmol of strontium trifluoroacetate Sr(CF 3 COO) 2 , 0.09 mmol of gadolinium trifluoroacetate Gd(CF 3 COO) 3 and 0.01 mmol of neodymium trifluoroacetate Nd ( CF 3 COO) 3 was added to 10 mL oleic acid and 10 mL octadecene, stirred to form a transparent and clear solution, then transferred to a 100 mL three-neck flask, and then heated to 100 °C under the protection of nitrogen atmosphere and kept for 30 minutes to remove water Deoxygenation, and finally continue heating to 280° C. under the protection of nitrogen atmosphere, and keep it warm for 3 hours. The obtained product was washed with a mixture of ethanol and cyclohexane, and dried at 60°C to obtain ultra-small (~7 nm) Yb/Tm: BaF 2 Gd/Nd: SrF 2 core-shell nanocrystals. Spectral tests show that the obtained nanocrystals can produce near-infrared-near-infrared dual-mode luminescence.

实例3:将0.40 mmol 硝酸钡、0.09 mmol 硝酸镱和0.01 mmol硝酸铥加入到10 mL去离子水,搅拌形成透明澄清溶液后,逐滴加入到10 mL乙醇、10 mL油酸和2.5 g油酸钠的混合液中,充分搅拌后移入到40 mL水热釜中,随后滴加入1.0 mol/L的氢氟酸水溶液4 mL,最后在160℃温度下进行溶剂热反应,保温时间为12小时。将所得纳米晶用乙醇和环己烷混合液洗涤后,于60℃烘干后得到Yb/Tm: BaF2核纳米晶。将所获得的Yb/Tm: BaF2核纳米晶、0.40 mmol三氟乙酸锶Sr(CF3COO)2、0.09 mmol三氟乙酸钆Gd(CF3COO)3和0.01mmol三氟乙酸钕Nd(CF3COO)3加入到10 mL油酸和10 mL十八烯中,搅拌形成透明澄清溶液后移入到100 mL三颈瓶中,随后在氮气气氛保护下加热至100℃并保温30分钟除水除氧,最后在氮气气氛保护下继续加热至310℃,并保温1小时。将所得产物用乙醇和环己烷混合液洗涤后,于60℃烘干后得到超小(~7纳米)Yb/Tm: BaF2Gd/Nd: SrF2核壳结构纳米晶。光谱测试表明所获纳米晶可产生近红外-近红外双模发光。Example 3: Add 0.40 mmol of barium nitrate, 0.09 mmol of ytterbium nitrate and 0.01 mmol of thulium nitrate to 10 mL of deionized water, stir to form a transparent and clear solution, then add dropwise to 10 mL of ethanol, 10 mL of oleic acid and 2.5 g of oleic acid Mixed solution of sodium, stirred thoroughly and transferred to a 40 mL hydrothermal kettle, then added dropwise 4 mL of 1.0 mol/L hydrofluoric acid aqueous solution, and finally carried out solvothermal reaction at 160°C for 12 hours. The obtained nanocrystals were washed with a mixture of ethanol and cyclohexane, and then dried at 60° C. to obtain Yb/Tm: BaF 2 core nanocrystals. The obtained Yb/Tm: BaF 2 core nanocrystals, 0.40 mmol of strontium trifluoroacetate Sr(CF 3 COO) 2 , 0.09 mmol of gadolinium trifluoroacetate Gd(CF 3 COO) 3 and 0.01 mmol of neodymium trifluoroacetate Nd ( CF 3 COO) 3 was added to 10 mL oleic acid and 10 mL octadecene, stirred to form a transparent and clear solution, then transferred to a 100 mL three-neck flask, and then heated to 100 °C under the protection of nitrogen atmosphere and kept for 30 minutes to remove water Deoxygenation, and finally continue heating to 310° C. under the protection of nitrogen atmosphere, and keep it warm for 1 hour. The obtained product was washed with a mixture of ethanol and cyclohexane, and dried at 60°C to obtain ultra-small (~7 nm) Yb/Tm: BaF 2 Gd/Nd: SrF 2 core-shell nanocrystals. Spectral tests show that the obtained nanocrystals can produce near-infrared-near-infrared dual-mode luminescence.

实例4:将0.40 mmol 硝酸钡、0.09 mmol 硝酸镱和0.01 mmol硝酸铥加入到10 mL去离子水,搅拌形成透明澄清溶液后,逐滴加入到10 mL乙醇、10 mL油酸和2.5 g油酸钠的混合液中,充分搅拌后移入到40 mL水热釜中,随后滴加入1.0 mol/L的氢氟酸水溶液4 mL,最后在160℃温度下进行溶剂热反应,保温时间为12小时。将所得纳米晶用乙醇和环己烷混合液洗涤后,于60℃烘干后得到Yb/Tm: BaF2核纳米晶。将所获得的Yb/Tm: BaF2核纳米晶、0.40 mmol三氟乙酸锶Sr(CF3COO)2、0.09 mmol三氟乙酸镧La(CF3COO)3和0.01mmol三氟乙酸钕Nd(CF3COO)3加入到10 mL油酸和10 mL十八烯中,搅拌形成透明澄清溶液后移入到100 mL三颈瓶中,随后在氮气气氛保护下加热至100℃并保温30分钟除水除氧,最后在氮气气氛保护下继续加热至280℃,并保温3小时。将所得产物用乙醇和环己烷混合液洗涤后,于60℃烘干后得到超小(~7纳米)Yb/Tm: BaF2La/Nd: SrF2核壳结构纳米晶。光谱测试表明所获纳米晶可产生近红外-近红外双模发光。Example 4: Add 0.40 mmol of barium nitrate, 0.09 mmol of ytterbium nitrate and 0.01 mmol of thulium nitrate to 10 mL of deionized water, stir to form a transparent and clear solution, then add dropwise to 10 mL of ethanol, 10 mL of oleic acid and 2.5 g of oleic acid Mixed solution of sodium, stirred thoroughly and transferred to a 40 mL hydrothermal kettle, then added dropwise 4 mL of 1.0 mol/L hydrofluoric acid aqueous solution, and finally carried out solvothermal reaction at 160°C for 12 hours. The obtained nanocrystals were washed with a mixture of ethanol and cyclohexane, and then dried at 60° C. to obtain Yb/Tm: BaF 2 core nanocrystals. The obtained Yb/Tm: BaF 2 core nanocrystals, 0.40 mmol strontium trifluoroacetate Sr(CF 3 COO) 2 , 0.09 mmol lanthanum trifluoroacetate La(CF 3 COO) 3 and 0.01 mmol neodymium trifluoroacetate Nd ( CF 3 COO) 3 was added to 10 mL oleic acid and 10 mL octadecene, stirred to form a transparent and clear solution, then transferred to a 100 mL three-neck flask, and then heated to 100 °C under the protection of nitrogen atmosphere and kept for 30 minutes to remove water Deoxygenation, and finally continue heating to 280° C. under the protection of nitrogen atmosphere, and keep it warm for 3 hours. The obtained product was washed with a mixture of ethanol and cyclohexane, and dried at 60°C to obtain ultra-small (~7 nm) Yb/Tm: BaF 2 La/Nd: SrF 2 core-shell nanocrystals. Spectral tests show that the obtained nanocrystals can produce near-infrared-near-infrared dual-mode luminescence.

实例5:将0.40 mmol 硝酸钡、0.09 mmol 硝酸镱和0.01 mmol硝酸铥加入到10 mL去离子水,搅拌形成透明澄清溶液后,逐滴加入到10 mL乙醇、10 mL油酸和2.5 g油酸钠的混合液中,充分搅拌后移入到40 mL水热釜中,随后滴加入1.0 mol/L的氢氟酸水溶液4 mL,最后在160℃温度下进行溶剂热反应,保温时间为12小时。将所得纳米晶用乙醇和环己烷混合液洗涤后,于60℃烘干后得到Yb/Tm: BaF2核纳米晶。将所获得的Yb/Tm: BaF2核纳米晶、0.40 mmol三氟乙酸锶Sr(CF3COO)2、0.09 mmol三氟乙酸镥Lu(CF3COO)3和0.01mmol三氟乙酸钕Nd(CF3COO)3加入到10 mL油酸和10 mL十八烯中,搅拌形成透明澄清溶液后移入到100 mL三颈瓶中,随后在氮气气氛保护下加热至100℃并保温30分钟除水除氧,最后在氮气气氛保护下继续加热至280℃,并保温3小时。将所得产物用乙醇和环己烷混合液洗涤后,于60℃烘干后得到超小(~7纳米)Yb/Tm: BaF2Lu/Nd: SrF2核壳结构纳米晶。光谱测试表明所获纳米晶可产生近红外-近红外双模发光。Example 5: Add 0.40 mmol of barium nitrate, 0.09 mmol of ytterbium nitrate and 0.01 mmol of thulium nitrate to 10 mL of deionized water, stir to form a transparent and clear solution, then add dropwise to 10 mL of ethanol, 10 mL of oleic acid and 2.5 g of oleic acid Mixed solution of sodium, stirred thoroughly and transferred to a 40 mL hydrothermal kettle, then added dropwise 4 mL of 1.0 mol/L hydrofluoric acid aqueous solution, and finally carried out solvothermal reaction at 160°C for 12 hours. The obtained nanocrystals were washed with a mixture of ethanol and cyclohexane, and then dried at 60° C. to obtain Yb/Tm: BaF 2 core nanocrystals. The obtained Yb/Tm: BaF 2 core nanocrystals, 0.40 mmol strontium trifluoroacetate Sr(CF 3 COO) 2 , 0.09 mmol lutetium trifluoroacetate Lu(CF 3 COO) 3 and 0.01 mmol neodymium trifluoroacetate Nd ( CF 3 COO) 3 was added to 10 mL oleic acid and 10 mL octadecene, stirred to form a transparent and clear solution, then transferred to a 100 mL three-neck flask, and then heated to 100 °C under the protection of nitrogen atmosphere and kept for 30 minutes to remove water Deoxygenation, and finally continue heating to 280° C. under the protection of nitrogen atmosphere, and keep it warm for 3 hours. The obtained product was washed with a mixture of ethanol and cyclohexane, and dried at 60°C to obtain ultra-small (~7 nm) Yb/Tm: BaF 2 Lu/Nd: SrF 2 core-shell nanocrystals. Spectral tests show that the obtained nanocrystals can produce near-infrared-near-infrared dual-mode luminescence.

Claims (1)

1. nanocrystalline preparation method of extra small nucleocapsid structure alkaline earth fluoride with near infrared-near infrared bimodulus characteristics of luminescence, the method comprises the steps:
(1) 0.40 mmol barium ion salt, 0.09 mmol ytterbium ion salt and 0.01 mmol thulium ion salt are joined 10 mL deionized waters, after stirring the transparent settled solution of formation, dropwise join in the mixed solution of 10 mL ethanol, 10 mL oleic acid and 2.5 g sodium oleates, be moved in the 40 mL water heating kettles after fully stirring, be added dropwise to subsequently hydrofluoric acid aqueous solution 4 mL of 1.0 mol/L, carry out solvent thermal reaction at last under 160 ℃ of temperature, the reaction times is 12 hours.After products therefrom usefulness ethanol and the washing of hexanaphthene mixed solution, after 40-80 ℃ of oven dry, obtain examining nanocrystalline.
(2) with step (1) Yb/Tm:BaF that obtains 2Examine nanocrystalline, 0.40 mmol Sr (CF 3COO) 2, 0.09 mmol Ln (CF 3COO) 3(wherein Ln can be any element among La, Ce, Pr, Sm, Eu, Gd, Y, Tb, Dy, Ho, Er, Tm, Yb or the Lu) and 0.01 mmol Nd (CF 3COO) 3Join in 10 mL oleic acid and the 10 mL octadecylenes; be moved in the 100 mL three-necked bottles after stirring the transparent settled solution of formation; under inert atmosphere protection, be heated to subsequently 100 ℃ and be incubated the deoxygenation that dewaters in 30 minutes; under inert atmosphere protection, continue to be heated to 260-310 ℃ at last, and be incubated 1-6 hour and react.After products therefrom usefulness ethanol and the washing of hexanaphthene mixed solution, after 40-80 ℃ of oven dry, obtain nano-crystal with core-shell structure.
CN 201210535015 2012-12-12 2012-12-12 Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure Pending CN102994089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210535015 CN102994089A (en) 2012-12-12 2012-12-12 Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210535015 CN102994089A (en) 2012-12-12 2012-12-12 Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure

Publications (1)

Publication Number Publication Date
CN102994089A true CN102994089A (en) 2013-03-27

Family

ID=47923208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210535015 Pending CN102994089A (en) 2012-12-12 2012-12-12 Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure

Country Status (1)

Country Link
CN (1) CN102994089A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224787A (en) * 2013-04-19 2013-07-31 中国科学院福建物质结构研究所 Rare earth-doped alkaline earth metal fluoride nano material, and preparation method and application thereof
CN103305222A (en) * 2013-06-18 2013-09-18 南京大学 KSc2F7: yb, preparation method and application of Er up-conversion fluorescent nanorods
CN104099091A (en) * 2013-04-09 2014-10-15 海洋王照明科技股份有限公司 Neodymium-and-ytterbium-codoped alkaline earth fluoride glass up-conversion luminescent material, and preparation method and application thereof
CN104109531A (en) * 2014-06-23 2014-10-22 北京大学 Core-shell structure rare earth light-emitting nano material and preparation method
CN104250554A (en) * 2013-06-28 2014-12-31 长春理工大学 Neodymium-doped barium fluoride nano powder luminescent material
CN104250553A (en) * 2013-06-28 2014-12-31 长春理工大学 Preparation method for neodymium-doped barium fluoride nano-material
CN105802627A (en) * 2016-04-29 2016-07-27 华南师范大学 Composite nano material capable of exciting upconversion steady persistence through near-infrared light and preparation thereof
CN107903899A (en) * 2017-12-21 2018-04-13 内蒙古师范大学 A kind of ytterbium erbium is co-doped with KGdF4The synthetic method of nano particle and nanobelt
CN112457849A (en) * 2020-12-15 2021-03-09 中国计量大学 Near-infrared fluoride core-shell nanocrystalline scintillator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099091A (en) * 2013-04-09 2014-10-15 海洋王照明科技股份有限公司 Neodymium-and-ytterbium-codoped alkaline earth fluoride glass up-conversion luminescent material, and preparation method and application thereof
CN103224787A (en) * 2013-04-19 2013-07-31 中国科学院福建物质结构研究所 Rare earth-doped alkaline earth metal fluoride nano material, and preparation method and application thereof
CN103224787B (en) * 2013-04-19 2017-12-12 中国科学院福建物质结构研究所 Rear-earth-doped alkali earth metal fluoride nano material and its preparation and application
CN103305222A (en) * 2013-06-18 2013-09-18 南京大学 KSc2F7: yb, preparation method and application of Er up-conversion fluorescent nanorods
CN103305222B (en) * 2013-06-18 2014-11-26 南京大学 KSc2F7: yb, preparation method and application of Er up-conversion fluorescent nanorods
CN104250554A (en) * 2013-06-28 2014-12-31 长春理工大学 Neodymium-doped barium fluoride nano powder luminescent material
CN104250553A (en) * 2013-06-28 2014-12-31 长春理工大学 Preparation method for neodymium-doped barium fluoride nano-material
CN104109531A (en) * 2014-06-23 2014-10-22 北京大学 Core-shell structure rare earth light-emitting nano material and preparation method
CN105802627A (en) * 2016-04-29 2016-07-27 华南师范大学 Composite nano material capable of exciting upconversion steady persistence through near-infrared light and preparation thereof
CN105802627B (en) * 2016-04-29 2018-05-01 华南师范大学 Composite nano materials and its preparation of long afterglow are changed in a kind of near infrared light excitation
CN107903899A (en) * 2017-12-21 2018-04-13 内蒙古师范大学 A kind of ytterbium erbium is co-doped with KGdF4The synthetic method of nano particle and nanobelt
CN112457849A (en) * 2020-12-15 2021-03-09 中国计量大学 Near-infrared fluoride core-shell nanocrystalline scintillator

Similar Documents

Publication Publication Date Title
CN102994089A (en) Preparation method of alkaline earth fluoride nanocrystal with ultra small core-shell structure
Guan et al. Tunable luminescence and energy transfer properties of NaGdF 4: Dy 3+, Eu 3+ nanophosphors
CN107033905A (en) A kind of rear-earth-doped lithium yttrium fluoride nano material and preparation method and application
Pan et al. Novel energy-transfer route and enhanced luminescent properties in YVO4: Eu3+/YBO3: Eu3+ composite
Speghini et al. Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family
CN112080278B (en) An up/down conversion dual-mode luminescent nanocrystal and its preparation method and application
CN107418554B (en) A kind of gold nanorods and upper conversion nano crystalline substance composite nano materials and preparation method thereof
Wu et al. Tunable upconversion luminescence of monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles
CN108165270A (en) A kind of nanometer of golden shell coats upper conversion nano crystalline substance sandwich and preparation method thereof
CN107722967B (en) A method of red fluorescence emits in enhancing ytterbium/holmium/cerium codope fluorine lutetium natrium nanocrystalline body
CN108998030A (en) A kind of composite material and preparation method and application with energy transmission effect
CN102093892A (en) Method for preparing rare earth doped lanthanum fluoride luminous hollow nano powder by using multi-element solvothermal method
CN101289616A (en) Process for preparing water-soluble up-conversion NaYF4:Er<3+>,Yb<3+> nano-crystalline using glycyl alcohol as solvent
CN112391167A (en) Rare earth doped ternary metal fluoride NaCaLnF6And preparation method of heterogeneous isomorphic material thereof
CN105754585B (en) A kind of nanocrystalline preparation method of the Coated with Oleic Acid rare earth calcirm-fluoride of High Efficiency Luminescence
CN103102880A (en) Simple spectrum band up-conversion luminescence nanocrystalline and preparation method thereof
CN107603623B (en) A kind of preparation method of small size β-NaREF4 phosphor
Fu et al. Luminescence property and magnetic resonance imaging of Gd2O3: Tb3+ nanocrystals doped with Zn2+, Li+
Wang et al. Optical properties of porous YVO4: Ln (Ln= Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method
CN112175618A (en) A Simple and Green Synthesis of Highly Homogeneous Gadolinium Phosphate Micro-Nano Luminescent Materials
CN106010536A (en) Method for synthesizing monodisperse rare earth doped up-converted fluorescence nanocrystalline through microwave assistance, and product thereof and application
CN105112056B (en) A kind of Er3+, Yb3+It is co-doped with NaYF4The preparation method of fluorescent material
CN105385444A (en) Strontium titanate light-emitting nano-particle coated by silicon dioxide and preparation method thereof
CN102517002A (en) Preparation method for alkaline earth fluo-chloride up-conversion luminescence nanometer crystal
Tan et al. Uniform lanthanide-doped Y2O3 hollow microspheres: Controlled synthesis and luminescence properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130327