CN102634015A - Synthesis method of poly(m-phenylenediamine) nanoparticles - Google Patents
Synthesis method of poly(m-phenylenediamine) nanoparticles Download PDFInfo
- Publication number
- CN102634015A CN102634015A CN2012101370914A CN201210137091A CN102634015A CN 102634015 A CN102634015 A CN 102634015A CN 2012101370914 A CN2012101370914 A CN 2012101370914A CN 201210137091 A CN201210137091 A CN 201210137091A CN 102634015 A CN102634015 A CN 102634015A
- Authority
- CN
- China
- Prior art keywords
- solution
- poly
- phenylenediamine
- phenylene diamine
- compound method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 22
- 238000001308 synthesis method Methods 0.000 title abstract description 4
- -1 poly(m-phenylenediamine) Polymers 0.000 title abstract 8
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229940018564 m-phenylenediamine Drugs 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 31
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims abstract description 13
- 239000000178 monomer Substances 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract 13
- 239000000243 solution Substances 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 7
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 7
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 7
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 5
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 5
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 2
- 239000004160 Ammonium persulphate Substances 0.000 claims 1
- 239000004159 Potassium persulphate Substances 0.000 claims 1
- 235000019395 ammonium persulphate Nutrition 0.000 claims 1
- 229960003280 cupric chloride Drugs 0.000 claims 1
- 235000019394 potassium persulphate Nutrition 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 18
- 239000000047 product Substances 0.000 description 11
- 239000005749 Copper compound Substances 0.000 description 8
- 150000001880 copper compounds Chemical class 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- MPVDXIMFBOLMNW-ISLYRVAYSA-N 7-hydroxy-8-[(E)-phenyldiazenyl]naphthalene-1,3-disulfonic acid Chemical compound OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1\N=N\C1=CC=CC=C1 MPVDXIMFBOLMNW-ISLYRVAYSA-N 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 6
- 239000003999 initiator Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 230000009102 absorption Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
Images
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种聚间苯二胺纳米粒子的合成方法。The invention relates to a method for synthesizing poly-m-phenylenediamine nanoparticles.
背景技术 Background technique
以聚芳香胺为代表的共轭高分子材料已成为近年来研究的一个热点,并得到广泛的应用。聚间苯二胺是其中一种很重要的共轭高分子,由于具有良好的环境稳定性,优异的氧化还原特性和分子结构可控等特点,已受到研究者的广泛关注,并应用在多个领域。如Li等报道了聚间苯二胺的优越水处理性能。李新贵等亦***研究了聚间苯二胺合成及其水处理的应用。Sun等发现了聚间苯二胺在生物传感极具应用潜力。Conjugated polymer materials represented by polyarylamines have become a research hotspot in recent years and have been widely used. Polym-phenylenediamine is one of the most important conjugated polymers. Due to its good environmental stability, excellent redox characteristics and controllable molecular structure, it has attracted extensive attention from researchers and has been used in many fields. Such as Li et al reported the superior water treatment performance of poly-m-phenylenediamine. Li Xingui and others also systematically studied the synthesis of poly-m-phenylenediamine and its application in water treatment. Sun et al. found that poly-m-phenylenediamine has great application potential in biosensing.
当前,纳米化是聚芳香胺合成的一个重点内容。常用的合成方法有软模板法,催化法,自组装法等。此类方法是基于化学氧化聚合提出来的,可高效合成聚芳香胺纳米材料。同时,此类方法一般采用“快混”工艺,即将引发剂溶液(如,过硫酸盐等)快速地与芳香胺单体溶液混合,以此抑制聚合物的二次生长,实现纳米化制备聚芳香胺。但此类工艺的缺点是所得产物产率低于逐步滴加引发剂所得的产物产率,而且因为大批量快速加入引发剂可能会引起“爆聚”现象,不适用于大规模工业化生产。At present, nanonization is a key content of polyarylamine synthesis. Common synthesis methods include soft template method, catalytic method, self-assembly method and so on. Such methods are proposed based on chemical oxidative polymerization, which can efficiently synthesize polyarylamine nanomaterials. At the same time, this kind of method generally adopts the "quick mixing" process, that is, the initiator solution (such as persulfate, etc.) Aromatic amines. However, the disadvantage of this type of process is that the yield of the product obtained is lower than that obtained by gradually adding the initiator dropwise, and because the rapid addition of the initiator in large quantities may cause the phenomenon of "burst polymerization", it is not suitable for large-scale industrial production.
常规的化学氧化聚合法采用逐步滴加引发剂,可有效克服快混工艺面临的不足。但是,此工艺亦使其难以制备纳米级的聚合物,因为该工艺有利于聚合物的二次生长,促进团聚体的生成。The conventional chemical oxidative polymerization method uses gradual dropwise addition of the initiator, which can effectively overcome the shortcomings of the rapid mixing process. However, this process also makes it difficult to prepare nanoscale polymers, because this process is conducive to the secondary growth of polymers and promotes the formation of aggregates.
综上所述,开发一种经济有效、具有高产率且具有普遍适用性的制备纳米结构的聚间苯二胺的方法是非常重要的。In summary, it is of great importance to develop a cost-effective, high-yield, and universally applicable method for preparing nanostructured polym-phenylenediamine.
发明内容Contents of the invention
本发明的目的是根据现有技术中的不足,提供一种经济有效、具有高产率且具有普遍适用性的制备纳米结构的聚间苯二胺的方法。The object of the present invention is to provide a method for preparing poly-m-phenylenediamine with nanostructure that is economical, effective, high yield and universally applicable according to the deficiencies in the prior art.
为实现上述目的,本发明通过以下技术方案实现:To achieve the above object, the present invention is achieved through the following technical solutions:
聚间苯二胺纳米粒子的合成方法,包括以下步骤,将水溶性二价铜化合物溶于水溶液中得溶液1,将间苯二胺单体溶于水溶液中得溶液2,将过硫酸盐溶于水溶液中得溶液3,将溶液1加入至溶液2中,其后,逐滴加入溶液3,加完溶液并充分反应后,将产物分离出来,The method for synthesizing poly-m-phenylenediamine nanoparticles comprises the steps of dissolving a water-soluble divalent copper compound in an aqueous solution to obtain a solution 1, dissolving a m-phenylenediamine monomer in an aqueous solution to obtain a
即得聚间苯二胺纳米粒子。That is, poly-m-phenylenediamine nanoparticles are obtained.
所述的二价铜化合物包括:硫酸铜,氯化铜和硝酸铜中的一种或几种。The divalent copper compound includes: one or more of copper sulfate, copper chloride and copper nitrate.
所述的二价铜化合物与间苯二胺单体的摩尔比为1:80~1:10。The molar ratio of the divalent copper compound to the m-phenylenediamine monomer is 1:80-1:10.
所述的过硫酸盐包括过硫酸铵、过硫酸钾和过硫酸钠中的一种或几种。The persulfate includes one or more of ammonium persulfate, potassium persulfate and sodium persulfate.
所述的过硫酸盐与间苯二胺单体的摩尔比为0.5:1~3:1。The molar ratio of the persulfate to the m-phenylenediamine monomer is 0.5:1-3:1.
所述的二价铜化合物的水溶液浓度为0.07~0.7mol/L;所述的过硫酸盐溶液浓度在0.05~0.5mol/L之间,间苯二胺单体的水溶液浓度为0.02~0.5mol/L。The concentration of the aqueous solution of the divalent copper compound is 0.07-0.7mol/L; the concentration of the persulfate solution is between 0.05-0.5mol/L, and the concentration of the aqueous solution of m-phenylenediamine monomer is 0.02-0.5mol /L.
所述的过硫酸盐溶液滴加时间为10-20min;滴加完后,反应2小时~5小时。The dropwise addition time of the persulfate solution is 10-20 minutes; after the dropwise addition, react for 2-5 hours.
上述反应温度在0~50℃之间。The above reaction temperature is between 0 and 50°C.
本发明方法中所述的引发剂是过硫酸盐,单体是间苯二胺。The initiator described in the method of the present invention is a persulfate, and the monomer is m-phenylenediamine.
本发明的有益效果:本发明所述的方法可高效制备纳米级聚间苯二胺,方法经济有效、操作简单,且产率有较大幅度的提升。聚合物在水和有机溶剂中的溶解性极弱,有利于其在水处理等领域的应用。合成的聚间苯二胺产物对水体中橙黄G吸附量可达353.8mg/g。Beneficial effects of the present invention: the method of the present invention can efficiently prepare nano-sized poly-m-phenylenediamine, the method is economical and effective, the operation is simple, and the yield is greatly improved. The solubility of polymers in water and organic solvents is extremely weak, which is conducive to its application in water treatment and other fields. The synthetic poly-m-phenylenediamine product has an adsorption capacity of orange G in water up to 353.8mg/g.
附图说明 Description of drawings
图1是实施例1~4制备的聚间苯二胺的TEM图。由图可知,合成的聚间苯二胺尺寸在100~150纳米左右,为均匀的纳米粒子。A,B,C和D分别对应铜化合物与间苯二胺单体摩尔比为1:10,1:20,1:40和1:80合成的聚合物。Fig. 1 is the TEM figure of the poly-m-phenylenediamine prepared in embodiment 1~4. It can be seen from the figure that the synthesized poly-m-phenylenediamine has a size of about 100-150 nanometers and is a uniform nanoparticle. A, B, C and D correspond to the polymers synthesized with the molar ratios of copper compound and m-phenylenediamine monomer being 1:10, 1:20, 1:40 and 1:80, respectively.
图2是实施例1~4制备的聚间苯二胺的红外谱图。聚合物在3600-3000cm-1的两个吸收峰为氨基伸缩振动;在1620和1500cm-1附近的吸收分别对应醌式结构和苯式结构的伸缩振动;在1250cm-1附近的吸收峰为苯式结构的C-N伸缩振动。对比现有研究(Zhang,L.;et al.Langmuir 2011,27,10327)可知,所得产物为聚间苯二胺。A,B,C和D分别对应铜化合物与间苯二胺单体摩尔比为1:10,1:20,1:40和1:80合成的聚合物。Fig. 2 is the infrared spectrogram of the polym-phenylenediamine that embodiment 1~4 prepares. The two absorption peaks of the polymer at 3600-3000cm -1 are amino stretching vibrations; the absorptions around 1620 and 1500cm -1 correspond to the stretching vibrations of quinone structure and benzene structure respectively; the absorption peak around 1250cm -1 is benzene CN stretching vibration of the formula structure. Compared with the existing research (Zhang, L.; et al. Langmuir 2011, 27, 10327), it can be known that the obtained product is poly-m-phenylenediamine. A, B, C and D correspond to the polymers synthesized with the molar ratios of copper compound and m-phenylenediamine monomer being 1:10, 1:20, 1:40 and 1:80, respectively.
图3是实施例1~4制备的聚间苯二胺的XRD图。聚合物在2°=15~35范围内存在一个宽的弥散峰,无明显的结晶峰。这表明合成的聚间苯二胺为无定形聚合物。A,B,C和D分别对应铜化合物与间苯二胺单体摩尔比为1:10,1:20,1:40和1:80合成的聚合物。Fig. 3 is the XRD pattern of the poly-m-phenylenediamine prepared in Examples 1-4. The polymer has a broad dispersion peak in the range of 2°=15~35, without obvious crystallization peak. This indicates that the synthesized poly-m-phenylenediamine is an amorphous polymer. A, B, C and D correspond to the polymers synthesized with the molar ratios of copper compound and m-phenylenediamine monomer being 1:10, 1:20, 1:40 and 1:80, respectively.
具体实施方式 Detailed ways
以下结合实施例对本发明进一步说明,而不会限制本发明。The present invention will be further described below in conjunction with the examples, without limiting the present invention.
实施例1Example 1
准确称量3g间苯二胺并加入至250ml的圆底烧瓶中。加入100ml蒸馏水搅拌至溶解,将单体溶液用水浴恒温至30°C;准确称量0.48g二水氯化铜并溶解于5ml蒸馏水中,将铜离子溶液用水浴恒温至30°C,再快速加入至间苯二胺溶液中,进行预反应,溶液由清澈无色迅速变为深黄褐色。准确称量6g过硫酸钠溶解在20ml蒸馏水中,使其充分溶解,将过硫酸钠溶液用水浴恒温至30°C。在约10min内,将过硫酸钠氧化剂逐步滴加至圆底***溶液中,引发聚合。上述反应在30°C中持续3小时。反应体系溶液由深黄褐色迅速变为黑色,并伴有大量固体颗粒生成。反应结束后,用G-3砂芯漏斗抽滤除去反应液,接着用蒸馏水润洗,再用1:1氨水去质子化,并用蒸馏水洗去残留氨水,再用乙醇润洗,产物在真空条件下干燥12小时。所得产物黑色固体粉末为纳米级的聚间苯二胺。Accurately weigh 3g of m-phenylenediamine and add to a 250ml round bottom flask. Add 100ml of distilled water and stir until dissolved, keep the temperature of the monomer solution in a water bath to 30°C; accurately weigh 0.48g of copper chloride dihydrate and dissolve it in 5ml of distilled water, keep the temperature of the copper ion solution in a water bath to 30°C, and quickly Add it to the m-phenylenediamine solution for pre-reaction, and the solution turns from clear and colorless to dark yellow-brown rapidly. Accurately weigh 6g of sodium persulfate and dissolve it in 20ml of distilled water to fully dissolve it, and keep the temperature of the sodium persulfate solution in a water bath to 30°C. Within about 10 minutes, the sodium persulfate oxidant was gradually added dropwise to the solution in the round bottom flask to initiate polymerization. The above reaction was continued at 30°C for 3 hours. The reaction system solution changed from dark yellow-brown to black rapidly, accompanied by the formation of a large number of solid particles. After the reaction, remove the reaction liquid by suction filtration with G-3 sand core funnel, then rinse with distilled water, then use 1:1 ammonia water to deprotonate, and wash away residual ammonia water with distilled water, then rinse with ethanol, the product is in vacuum condition Dry for 12 hours. The black solid powder of the obtained product is nano-scale poly-m-phenylenediamine.
实施例2~4Example 2~4
重复实施例1,改变氯化铜的加入量,使氯化铜与间苯二胺单体摩尔比为1:20,1:40和1:80。所得产物黑色固体粉末均为纳米级的聚间苯二胺。Repeat Example 1, change the amount of copper chloride added, so that the molar ratio of copper chloride to m-phenylenediamine monomer is 1:20, 1:40 and 1:80. The black solid powder of the obtained product is all nano-scale polym-phenylenediamine.
对比实施例1Comparative Example 1
根据实施例1的方法,在反应过程中不添加铜化合物,制备聚间苯二胺。所得产物为微米级的黑色固体粉末,其尺寸在1微米左右。According to the method of Example 1, no copper compound was added during the reaction to prepare poly-m-phenylenediamine. The obtained product is a micron-sized black solid powder with a size of about 1 micron.
结合实施例1~4,可见铜离子预反应对聚间苯二胺产物的微观形貌有显著影响。所述的合成方法,可直接获得聚间苯二胺纳米粒子。In combination with Examples 1-4, it can be seen that the pre-reaction of copper ions has a significant impact on the microscopic morphology of the poly-m-phenylenediamine product. The synthesis method can directly obtain poly-m-phenylenediamine nanoparticles.
以上各实施例及对比实施例1中对应的反应收率数据如表1所示。The corresponding reaction yield data in each of the above examples and Comparative Example 1 are shown in Table 1.
表1Table 1
由数据可见,采用铜离子预反应亦可使常规化学氧化法的合成产物产率有较大幅度的提升。It can be seen from the data that the use of copper ion pre-reaction can also greatly increase the yield of the synthetic product of the conventional chemical oxidation method.
实施例5Example 5
重复实施例1,将氯化铜改为硫酸铜或硝酸铜。所得产物为纳米级的黑色固体粉末。Repeat embodiment 1, copper chloride is changed into copper sulfate or cupric nitrate. The obtained product is a nanoscale black solid powder.
下述实施例将以吸附有机染料橙黄G为例证进一步说明本发明的聚间苯二胺纳米粒子在吸附领域的应用潜力。The following examples will further illustrate the application potential of the polym-phenylenediamine nanoparticles of the present invention in the field of adsorption by taking the adsorption of the organic dye Orange G as an example.
实施例6Example 6
准确称量3g实施例1合成的聚间苯二胺纳米粒子,并投加至300ml的1mol/L盐酸溶液中,在室温下搅拌6小时。其后抽滤分离酸化的聚间苯二胺纳米粒子,并用蒸馏水润洗,在真空条件中干燥12小时。准确称量25mg的酸化聚间苯二胺纳米粒子,投加至50ppm的50ml橙黄G溶液中,水浴30°C中震荡2小时。抽滤,捕获滤液,测量滤液中橙黄G浓度。此例的橙黄G脱除率达99.8%。Accurately weigh 3 g of the poly-m-phenylenediamine nanoparticles synthesized in Example 1, add to 300 ml of 1 mol/L hydrochloric acid solution, and stir at room temperature for 6 hours. Thereafter, the acidified poly-m-phenylenediamine nanoparticles were separated by suction filtration, rinsed with distilled water, and dried under vacuum conditions for 12 hours. Accurately weigh 25 mg of acidified poly-m-phenylenediamine nanoparticles, add to 50 ppm of orange G solution in 50 ml, and shake in a water bath at 30° C. for 2 hours. Suction filtration, capture the filtrate, measure the concentration of orange G in the filtrate. The orange G removal rate of this example reaches 99.8%.
实施例7Example 7
重复实施例6,将橙黄G溶液浓度改为80、120、240、360及480ppm。橙黄G的脱除率分别为99.9%、98.8%、71.3%、50.1%和36.6%;其吸附量分别为161.3mg/g、237.4mg/g、342.2mg/g、345.6mg/g和353.8mg/g。Repeat Example 6, changing the concentration of Orange G solution to 80, 120, 240, 360 and 480ppm. The removal rates of Orange G were 99.9%, 98.8%, 71.3%, 50.1% and 36.6% respectively; the adsorption amounts were 161.3mg/g, 237.4mg/g, 342.2mg/g, 345.6mg/g and 353.8mg /g.
上述实施例仅用于对本发明进行说明,并不构成对权利要求的限制,本领域技术人员可以想到的其他实质手段,均在本发明权利要求范围内。The above-mentioned embodiments are only used to illustrate the present invention, and do not constitute a limitation to the claims. Other substantive means conceivable by those skilled in the art are within the scope of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210137091 CN102634015B (en) | 2012-05-04 | 2012-05-04 | Synthesis method of poly(m-phenylenediamine) nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201210137091 CN102634015B (en) | 2012-05-04 | 2012-05-04 | Synthesis method of poly(m-phenylenediamine) nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102634015A true CN102634015A (en) | 2012-08-15 |
CN102634015B CN102634015B (en) | 2013-06-19 |
Family
ID=46618599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201210137091 Active CN102634015B (en) | 2012-05-04 | 2012-05-04 | Synthesis method of poly(m-phenylenediamine) nanoparticles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102634015B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102875804A (en) * | 2012-09-25 | 2013-01-16 | 中南大学 | Synthetic method of polymetaphenylene diamine nanoparticle |
CN103694471A (en) * | 2013-12-25 | 2014-04-02 | 哈尔滨工业大学 | Method for preparing poly(o-phenylenediamine) nanomicelle by utilizing aqueous phase method |
CN103788369A (en) * | 2013-12-25 | 2014-05-14 | 哈尔滨工业大学 | Method for preparing poly(o-phenylenediamine) fluorescent nano-belt by virtue of water-phase method |
CN103785364A (en) * | 2014-02-27 | 2014-05-14 | 中南大学 | Graphene-metal-poly(m-phenylenediamine) plural gel as well as quick preparation and application methods thereof |
CN104530425A (en) * | 2014-12-10 | 2015-04-22 | 中南大学 | Copper doped poly(m-phenylenediamine) nanoparticle and synthesis and application method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3014685B1 (en) * | 2013-12-13 | 2016-11-25 | Oreal | PROCESS FOR COLORING KERATINIC MATERIALS FROM OLIGOMERS AND / OR COLOR POLYMERS FROM METAPHENYLENEDIAMINES, COMPOSITION, AND COLORING AGENT |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2274488C1 (en) * | 2004-10-18 | 2006-04-20 | Открытое акционерное общество "Пигмент" | Method of preparing catalyst for synthesis of n-methylaniline |
EP1862198A2 (en) * | 2006-06-01 | 2007-12-05 | Henkel Kommanditgesellschaft auf Aktien | Brightening and/or dyeing agent with urea derivatives |
CN101475686A (en) * | 2009-01-14 | 2009-07-08 | 华东理工大学 | Method for preparing polyaniline derivative-metal complex |
WO2010130977A1 (en) * | 2009-05-12 | 2010-11-18 | Wista Laboratories Ltd. | Methods of chemical synthesis of diaminophenothiazinium compounds involving the use of persulfate oxidants |
CN102247818A (en) * | 2011-05-27 | 2011-11-23 | 中南大学 | Adsorbent for removing sulfate ions contained in water body as well as preparation and application thereof |
-
2012
- 2012-05-04 CN CN 201210137091 patent/CN102634015B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2274488C1 (en) * | 2004-10-18 | 2006-04-20 | Открытое акционерное общество "Пигмент" | Method of preparing catalyst for synthesis of n-methylaniline |
EP1862198A2 (en) * | 2006-06-01 | 2007-12-05 | Henkel Kommanditgesellschaft auf Aktien | Brightening and/or dyeing agent with urea derivatives |
CN101475686A (en) * | 2009-01-14 | 2009-07-08 | 华东理工大学 | Method for preparing polyaniline derivative-metal complex |
WO2010130977A1 (en) * | 2009-05-12 | 2010-11-18 | Wista Laboratories Ltd. | Methods of chemical synthesis of diaminophenothiazinium compounds involving the use of persulfate oxidants |
CN102247818A (en) * | 2011-05-27 | 2011-11-23 | 中南大学 | Adsorbent for removing sulfate ions contained in water body as well as preparation and application thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102875804A (en) * | 2012-09-25 | 2013-01-16 | 中南大学 | Synthetic method of polymetaphenylene diamine nanoparticle |
CN103694471A (en) * | 2013-12-25 | 2014-04-02 | 哈尔滨工业大学 | Method for preparing poly(o-phenylenediamine) nanomicelle by utilizing aqueous phase method |
CN103788369A (en) * | 2013-12-25 | 2014-05-14 | 哈尔滨工业大学 | Method for preparing poly(o-phenylenediamine) fluorescent nano-belt by virtue of water-phase method |
CN103788369B (en) * | 2013-12-25 | 2016-02-17 | 哈尔滨工业大学 | Aqueous phase prepares the method for poly-o-phenylenediamine fluorescence nano band |
CN103785364A (en) * | 2014-02-27 | 2014-05-14 | 中南大学 | Graphene-metal-poly(m-phenylenediamine) plural gel as well as quick preparation and application methods thereof |
CN103785364B (en) * | 2014-02-27 | 2016-01-13 | 中南大学 | A kind of graphene-metal-poly-m-phenylenediamine composite gel and its rapid preparation and application method |
CN104530425A (en) * | 2014-12-10 | 2015-04-22 | 中南大学 | Copper doped poly(m-phenylenediamine) nanoparticle and synthesis and application method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102634015B (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102634015A (en) | Synthesis method of poly(m-phenylenediamine) nanoparticles | |
CN101649011B (en) | Preparation method of thiol-ene click chemistry functionalized hyperbranched polyethyleneimine | |
CN104986742B (en) | One species bead chain shape graphitization azotized carbon nano material and preparation method thereof | |
CN102430391A (en) | A kind of preparation method and application of metal ion imprinted chitosan cross-linked membrane adsorbent | |
CN104558321A (en) | Preparation method for POSS/PDMAEMA organic/inorganic hybrid material according to thiol-ene click chemistry method | |
CN103407992A (en) | Method for preparing hydrophilic temperature and pH dual-sensitive graphene through thiol-ene click chemistry method | |
CN104804198A (en) | Self-supporting two-dimensional single-layered supramolecular polymer and application of two-dimensional single-layered supramolecular polymer in nano separation membrane | |
CN103214671B (en) | A kind of novel N-substituted carboxylic acid polyaniline chemical oxidation preparation method | |
CN106905495A (en) | A kind of preparation method of surface modification of carbon nanotube and composite | |
CN103694632B (en) | A kind of preparation method of epoxy resin composite material | |
CN104497308B (en) | A kind of preparation method of poly- adjacent mercaptoaniline nanofiber | |
Lyu et al. | Adsorption of anionic acid red G dye on polyaniline nanofibers synthesized by FeCl3 oxidant: Unravelling the role of synthetic conditions | |
CN111659357A (en) | Polymeric Schiff base type adsorption material, preparation and application thereof in heavy metal adsorption | |
CN102336975A (en) | Method for preparing nano silver/polystyrene composite material by microemulsion polymerization | |
CN102093497B (en) | Method for preparing high-stereoregularity acrylonitrile resin | |
CN107828032A (en) | A kind of hyperbranched starlike poly ion liquid and its preparation method and application | |
CN107900376B (en) | Preparation method of water-soluble silver nanoparticles | |
CN105289748A (en) | Preparation method for auxiliarily compounding magnetic confined noble metal catalysts through soft template | |
CN102875804A (en) | Synthetic method of polymetaphenylene diamine nanoparticle | |
CN102614869A (en) | Preparation method of amino functionalization porous palladium nanospheres | |
CN103041754B (en) | Polymer micelle modified by nano copper oxide and preparation method of polymer micelle | |
CN106544861B (en) | A kind of preparation method and applications of functionality AOPAN-AA nano fibrous membrane | |
CN1218978C (en) | Polysulfonated styrene grafted water soluble carbon nano pipe and its preparation method | |
CN102631951B (en) | Method for preparing organic-inorganic hybrid nano-titania hollow ball with high catalytic performance | |
Ji et al. | Methods for Synthesizing Polymer Nanocomposites and Their Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |