CN102408095A - A method for decomposing hydrogen sulfide to prepare hydrogen and elemental sulfur - Google Patents
A method for decomposing hydrogen sulfide to prepare hydrogen and elemental sulfur Download PDFInfo
- Publication number
- CN102408095A CN102408095A CN2011102405121A CN201110240512A CN102408095A CN 102408095 A CN102408095 A CN 102408095A CN 2011102405121 A CN2011102405121 A CN 2011102405121A CN 201110240512 A CN201110240512 A CN 201110240512A CN 102408095 A CN102408095 A CN 102408095A
- Authority
- CN
- China
- Prior art keywords
- oxide
- sulfide
- hydrogen
- hydrogen sulfide
- elemental sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910000037 hydrogen sulfide Inorganic materials 0.000 title claims abstract description 61
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000001257 hydrogen Substances 0.000 title claims abstract description 30
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 21
- 239000011941 photocatalyst Substances 0.000 claims abstract description 16
- 230000004888 barrier function Effects 0.000 claims abstract description 13
- 239000003054 catalyst Substances 0.000 claims abstract description 11
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims abstract description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 7
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 5
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 5
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims abstract description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims abstract description 4
- 239000011787 zinc oxide Substances 0.000 claims abstract description 4
- 239000005083 Zinc sulfide Substances 0.000 claims abstract description 3
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 claims abstract description 3
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims abstract description 3
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims abstract description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims abstract description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims abstract description 3
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims abstract description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims abstract description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract 3
- 239000005751 Copper oxide Substances 0.000 claims abstract 2
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract 2
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 239000002808 molecular sieve Substances 0.000 claims description 6
- 230000001699 photocatalysis Effects 0.000 claims description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052755 nonmetal Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 241000219793 Trifolium Species 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 239000000292 calcium oxide Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 238000000975 co-precipitation Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 238000007146 photocatalysis Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims 1
- 241000736305 Marsilea quadrifolia Species 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 229910000323 aluminium silicate Inorganic materials 0.000 claims 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims 1
- 239000004917 carbon fiber Substances 0.000 claims 1
- 239000003610 charcoal Substances 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 229910003472 fullerene Inorganic materials 0.000 claims 1
- 239000000395 magnesium oxide Substances 0.000 claims 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 5
- 239000003245 coal Substances 0.000 abstract description 2
- 238000010494 dissociation reaction Methods 0.000 abstract description 2
- 230000005593 dissociations Effects 0.000 abstract description 2
- 239000003345 natural gas Substances 0.000 abstract description 2
- 238000000746 purification Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000005272 metallurgy Methods 0.000 abstract 1
- 239000003208 petroleum Substances 0.000 abstract 1
- 230000009466 transformation Effects 0.000 description 9
- 239000005864 Sulphur Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 206010027439 Metal poisoning Diseases 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000019086 sulfide ion homeostasis Effects 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000001149 thermolysis Methods 0.000 description 1
- -1 thomel Chemical compound 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Abstract
The invention discloses a method for preparing hydrogen and elemental sulfur by decomposing hydrogen sulfide, and belongs to the technical field of hydrogen production and gas purification. The invention is characterized in that hydrogen sulfide or gas containing hydrogen sulfide is ionized through dielectric barrier discharge to form uniformly distributed non-equilibrium plasma, and the hydrogen sulfide is spontaneously decomposed into hydrogen and elemental sulfur in the plasma; when the photocatalyst is arranged in the plasma, the energy of photons in the photocatalyst can be utilized to promote the decomposition of the hydrogen sulfide, and the complete conversion can be realized under proper conditions. Conventional solid photocatalysts can be used in the above processes, such as titanium oxide, cerium oxide, zirconium oxide, zinc oxide, cadmium oxide, copper oxide, molybdenum oxide, tungsten oxide, zinc sulfide, cadmium sulfide, copper sulfide, molybdenum sulfide, tungsten sulfide, and a mixture of two or more thereof, and they can also be supported on a porous material to prepare a supported catalyst. The method of the invention is particularly suitable for treating the gas containing hydrogen sulfide in the chemical industry of natural gas, petroleum and coal, and can also be used for hydrogen production and elemental sulfur production by dissociation of the gas containing hydrogen sulfide in metallurgy, ocean and the like. The method has no special requirements or limitations on the source and the composition of the gas, thereby having universality for hydrogen sulfide decomposition and hydrogen production.
Description
Technical field
The invention belongs to hydrogen manufacturing and gas purification technology field, relate to and a kind of deleterious hydrogen sulfide is decomposed into the method that nontoxic elemental sulfur obtains hydrogen simultaneously.
Technical background
Hydrogen sulfide is a kind of severe toxicity, malodorous colourless gas, not only is detrimental to health, and can causes the corrosion of materials such as metal, therefore need carry out harmless treatment on the spot.Sweet natural gas, oil, coal and mineral products processing industry produce a large amount of H 2 S-containing gas, and main at present is elemental sulfur and water through Crouse (Claus) method with its partially oxidation:
H
2S+3/2O
2→SO
2+H
2O
2H
2S+SO
2→3/xS
x+2H
2O
Though claus process can realize that hydrogen sulfide is innoxious, make to have more that the hydrogen resource conversion of high added value is a water, wasted valuable resource.Obviously, if can hydrogen sulfide be decomposed, then not only can make hydrogen sulfide innoxious, and can obtain the hydrogen of high added value and nontoxic elemental sulfur.Theoretically, in common nonmetal hydrogenate (water, ammonia and hydrogen sulfide), the dissociation energy of hydrogen sulfide is minimum, thereby hydrogen sulfide thermolysis hydrogen manufacturing is the easiest.Yet the decomposition reaction of hydrogen sulfide receives thermodynamics equilibrium limit, have only at low temperatures very low equilibrium conversion (Qian Xinping, Ling Zhongqian, Zhou Wu, Cen Kefa, the chemistry of fuel journal, 2005,33 (6), 722-725).Such as, in the time of 1000 ℃ the transformation efficiency of hydrogen sulfide be merely 20%, 1200 ℃ transformation efficiency be 38% (Slimane R.B., GasTIPS, 2004,30-34).In order to produce localized hyperthermia, have many investigators to adopt superinsulation method decomposing hydrogen sulfide, but its energy consumption is still very high.In order to break the chemical reaction equilibrium restriction, have many investigators to adopt film reaction technology, but the development and application of the mould material of high temperature resistant and anti-sulphur become the key that realizes technological breakthrough.The reaction of hydrogen sulfide decomposing hydrogen-production and sulphur can also realize through methods such as electrochemistry and photochemical catalysis, but have the many or low shortcoming of reaction efficiency of operation steps.
When hydrogen sulfide was used for hydrogen manufacturing as a kind of hydrogen source, the residual meeting of trace hydrogen sulfide brought many serious problems when using.Hydrogen is mainly used in the reductive agent of fuel cell and chemical industry, makes catalyzer owing in these two kinds of occasions, all use precious metal, and hydrogen sulfide very easily makes the precious metal poisoning and loses activity.In the method for existing hydrogen sulfide pyrolysis hydrogen manufacturing; Owing to receive the restriction of thermodynamic(al)equilibrium can not realize transforming fully; Must relate to separating of product hydrogen and reactant hydrogen sulfide, and the lock out operation of H 2 S-containing gas is very harsh, and is difficult to realize separating fully.Therefore, the complete decomposition technique of hydrogen sulfide is only a kind of desirable hydrogen producing technology.
Summary of the invention
The invention provides the method for a kind of preparing hydrogen gas by decomposing hydrogen sulfide and elemental sulfur, under dielectric barrier discharge and photocatalysis synergy, hydrogen sulfide is efficiently decomposed, hydrogen sulfide can 100% be converted into hydrogen and elemental sulfur under optimum conditions.
The technical scheme that technical solution problem of the present invention adopts is following:
Plasma body is the 4th attitude of material, is rich in the as lively as a cricket high reactivity species such as atom, molecule and radical of ion, electronics, excited state, is a kind of gas with electroconductibility.The present invention adopts the plasma body of the dielectric barrier discharge of atmospheric operation to combine with catalyzer, utilizes excite the fully decomposition that with catalyzer the promotion of reaction realized hydrogen sulfide of plasma body to hydrogen sulfide.The energy of the high energy particle in the plasma body is generally several to tens electron-volts (eV), is enough to the activation energy that provides chemical reaction required.In addition, plasma body is a nonequilibrium situations, thereby can break the thermodynamics equilibrium limit of hydrogen sulfide decomposition reaction.Moreover; Contain the mutually equally distributed a large amount of photons of body in the plasma body; Not only can effectively utilize this part energy through photochemical catalysis, and can improve the transformation efficiency of reaction, thereby realize less energy-consumption, high-level efficiency decomposing hydrogen sulfide production high-purity hydrogen and elemental sulfur.
The decomposition fully of hydrogen sulfide is worked in coordination with through dielectric barrier discharge and photochemical catalysis and realized particularly: dielectric barrier discharge makes hydrogen sulfide or hydrogen sulfide containing ionization of gas; Form equally distributed nonequilibrium plasma, hydrogen sulfide is spontaneous hydrogen and the elemental sulfur of being decomposed in plasma body; When in the plasma body photocatalyst being arranged, the transformation efficiency of hydrogen sulfide can significantly improve, and can realize under the suitable condition transforming fully.Dielectric barrier discharge both can use AC power, also can use direct supply.The photocatalyst of plasma body zone filling is solid particulate and powder, and the solid photocatalyst with photocatalytic activity all is suitable for the present invention.Such as, titanium oxide, cerium oxide, zirconium white, zinc oxide, Cadmium oxide, cupric oxide, molybdenum oxide, Tungsten oxide 99.999, zinc sulphide, Cadmium Sulfide, cupric sulfide, moly-sulfide, tungsten sulfide, and two kinds or two or more mixtures forming by them.Photocatalyst can be used metal and non-metallic element modification and modification, to improve catalytic perfomance.
Component with photocatalytic activity also can load on processes loaded catalyst on the porous material; Employed carrier does not have particular restriction; Can be one or both and the two or more mixtures in gac, carbonaceous molecular sieve, carbon nanotube, thomel, Graphene, soccerballene, silicon oxide, aluminum oxide, silico-aluminate, phosphoric acid salt, carbonate, Natural manganese dioxide, titanium oxide, quicklime, zirconium white, cerium oxide, zeolite molecular sieve, mesopore molecular sieve, mesoporous-microporous composite material, high-specific surface area large pore material, high molecular polymer and the porous metal, preferable shape be that sphere, bar shaped, trifolium shape, Herba Galii Bungei shape, sheet, tooth are spherical.The preparation method can adopt traditional pickling process, coprecipitation method, sedimentation and sputtering method etc.
Effect of the present invention and benefit are that this method not only can be carried out harmless treatment to hydrogen sulfide, and can prepare the hydrogen of high added value from hydrogen sulfide.This method does not have particular requirement or restriction to the source and the composition of gas, thereby has universality for the decomposing hydrogen-production of various concentration of H 2 S.
Description of drawings
Fig. 1 is CdS/Al during decomposing hydrogen sulfide in the dielectric barrier discharge plasma
2O
3The activity of photocatalyst is with the variation in reaction times.
Embodiment
Be described in detail specific embodiment of the present invention below in conjunction with technical scheme.
Embodiment 1
Preparation of catalysts: commercially available titanium oxide, silicon-dioxide and aluminum oxide pressed powder at forming under the pressure, are sieved out 20~40 order particles then.
Embodiment 2
Taking by weighing 1.50 gram particle degree is 20~40 purpose γ-Al
2O
3Carrier (specific surface area 270m
2/ g), get the Cd (NO of 0.40 gram
3)
24H
2O is dissolved in 1.5 ml deionized water; This solution is slowly splashed into carrier and stirs, at room temperature flooded 8 hours, in 120 ℃ baking oven dry 12 hours then; The gained solid in retort furnace under 450 ℃ of air atmosphere roasting reduce to room temperature after 5 hours, the gained catalyzer is labeled as CdO/Al
2O
3Adopting uses the same method can prepare ZnO/Al
2O
3
Embodiment 3
With the CdO/Al that obtains among the embodiment 3
2O
3Sulfuration pack into feeding vulcanizing agent (10%H with 30mL/min in the silica tube
2S/Ar), rise to 400 ℃ and kept 100 minutes in 20 minutes.Obtain the catalyzer that contains 10% (massfraction) Cadmium Sulfide of alumina load, note is made CdS/Al
2O
3ZnS/Al
2O
3The preparation of employing same procedure.
Embodiment 4
The dielectric barrier discharge structure of reactor: discharge electrode adopts the line barrel structure, and high-pressure stage is positioned on the axis of tubular reactor, and earthing pole is looped around the outer wall of quartz glass tube.High voltage terminal is the stainless steel wire of 2.5 millimeters of diameters, and ground connection is kaolin very.The external diameter of silica tube is 10 millimeters.
Beaded catalyst is placed in quartz glass tube and the high voltage electric interpolar cavity, feed nitrogen 5 minutes to remove the oxygen in the reactor drum.Through mass flowmeter control, make the argon gas gas mixture that contains 10% hydrogen sulfide pass through beds with certain flow.Connect the plasma electrical source that connects high-pressure stage and earthing pole, regulating voltage, electric current and frequency can change power input.After reacted gas process aqueous sodium hydroxide solution and two sections absorptions of copper sulfate solution, hydrogen content is used the chromatographic instrument on-line analysis in the tail gas.Calculate the transformation efficiency of hydrogen sulfide according to the concentration of hydrogen.Under 100% conversion condition, further verify with Lead acetate paper.
Table 1 has compared the transformation efficiency that different catalysts hydrogen sulfide under identical power input condition is decomposed into hydrogen and elemental sulfur.Reaction conditions is following: catalyst volume 1mL, and inlet gas flow: 10mL/min, reaction pressure is a normal pressure, power input is 24 watts of (55V * 0.43A).Can find out that under the synergy of plasma body and titanium oxide, hydrogen sulfide can be converted into hydrogen and elemental sulfur fully.The faint yellow sulphur product that is deposited on the beds downstream is mainly α phase sulphur through the analysis of x-ray powder diffraction.Use three kinds of catalyzer all not see that in reaction transformation efficiency descends in 10 hours.
Table 1 under identical power input hydrogen sulfide at TiO
2, SiO
2And Al
2O
3On be decomposed into the transformation efficiency of hydrogen and elemental sulfur
Catalyzer | TiO 2 | SiO 2 | Al 2O 3 |
The hydrogen sulfide transformation efficiency, % | 100 | 85 | 90 |
Embodiment 5
Adopt reaction unit and reactions step among the embodiment 4 to carry out the decomposition reaction of hydrogen sulfide in plasma body under solid photocatalyst existence condition.The plasma discharge frequency is 10kHz, and loaded catalyst is 1.5mL, reaction gas (10%H
2The gas mixture of S and 90%Ar) flow velocity is 60mL/min.Reaction result such as following table:
The reactivity worth of the collaborative decomposing hydrogen sulfide of plasma body and solid photocatalyst and product Hydrogen Energy consumption under table 2 different input power
Embodiment 6
Adopt reaction unit and reactions step among the embodiment 4 to investigate CdS/Al
2O
3The activity stability of photocatalyst in the hydrogen sulfide decomposition reaction.The plasma discharge frequency is 10kHz, and loaded catalyst is 1.5mL, reaction gas (10%H
2The gas mixture of S and 90%Ar) flow velocity is 60mL/min.Reaction result is as shown in Figure 1.Thus it is clear that, CdS/Al
2O
3Has good active stability.
Above-mentioned test-results shows that the collaborative thermodynamics equilibrium limit of not only can breaking of dielectric barrier discharge and photocatalyst realizes transforming fully, and energy utilization rate is high, is the effective ways that a kind of direct decomposing hydrogen sulfide is produced hydrogen and sulphur.
The foregoing description has been explained dielectric barrier discharge plasma and the collaborative efficient decomposition method of hydrogen sulfide, the employed Catalysts and its preparation method realized of photochemical catalysis with the example that is decomposed into of hydrogen sulfide in the argon gas.Can carry out some modifications and improvement to the present invention; For example; Reactor drum and electrode structure are improved, carrier surface is carried out modification, perhaps add some metals or nonmetal Primary Catalysts of the present invention is carried out certain modification etc. with metal or nonmetal and its esters.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102405121A CN102408095B (en) | 2011-08-20 | 2011-08-20 | A method for decomposing hydrogen sulfide to prepare hydrogen and elemental sulfur |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102405121A CN102408095B (en) | 2011-08-20 | 2011-08-20 | A method for decomposing hydrogen sulfide to prepare hydrogen and elemental sulfur |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102408095A true CN102408095A (en) | 2012-04-11 |
CN102408095B CN102408095B (en) | 2013-01-30 |
Family
ID=45910500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102405121A Expired - Fee Related CN102408095B (en) | 2011-08-20 | 2011-08-20 | A method for decomposing hydrogen sulfide to prepare hydrogen and elemental sulfur |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102408095B (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103204466A (en) * | 2013-04-24 | 2013-07-17 | 滨州学院 | Device and method for preparing hydrogen through temperature controlled continuous decomposition of hydrogen sulfide |
CN103204467A (en) * | 2013-04-24 | 2013-07-17 | 滨州学院 | Device and method for continuously and steadily decomposing and making up hydrogen with hydrogen sulfide |
CN103495427A (en) * | 2013-10-17 | 2014-01-08 | 大连理工大学 | Method for using low-temperature plasma to prepare supported metal sulfide catalyst |
WO2016074111A1 (en) * | 2014-11-15 | 2016-05-19 | 李建庆 | Temperature-controlled apparatus for hydrogen production by continuous decomposition of hydrogen sulfide |
CN106622293A (en) * | 2016-12-30 | 2017-05-10 | 哈尔滨工业大学 | A kind of preparation method of H-TiO2/CdS/Cu2-xS nanobelt |
CN106890674A (en) * | 2016-10-31 | 2017-06-27 | 环境保护部南京环境科学研究所 | A kind of catalyst and its preparation and application for removing hydrogen sulfide in biogas |
CN107161947A (en) * | 2017-06-20 | 2017-09-15 | 中国科学院山西煤炭化学研究所 | Carbon dioxide and hydrogen sulfide gaseous mixture convert the method and device of producing synthesis gas |
CN107803208A (en) * | 2017-11-14 | 2018-03-16 | 湘潭大学 | A kind of microwave catalyst, its preparation method and the method that hydrogen sulfide is catalytically decomposed |
CN108342743A (en) * | 2017-01-23 | 2018-07-31 | 中国石油化工股份有限公司 | It is electrolysed the method and device of hydrogen sulfide preparing high purity hydrogen and sulphur |
CN108584884A (en) * | 2018-07-26 | 2018-09-28 | 山西铁峰化工有限公司 | A kind of device and method detaching carbon disulfide byproducts hydrogen sulfide using plasma |
CN109225273A (en) * | 2018-10-18 | 2019-01-18 | 中国计量大学 | A kind of copper sulfide/tungsten sulfide composite photo-catalyst and preparation method thereof |
CN109647378A (en) * | 2018-12-17 | 2019-04-19 | 福州大学 | It is a kind of for removing odors the preparation method of the nanometer sheet self assembly micron ball catalysis material of hydrogen sulfide |
CN109772403A (en) * | 2019-01-23 | 2019-05-21 | 湘潭大学 | A kind of coated catalyst is used for the method for catalytic decomposition of hydrogen sulfide |
CN109908883A (en) * | 2019-01-24 | 2019-06-21 | 华东师范大学 | Nanometer carbon-based metal oxide composite material with photoelectric catalytic function and preparation method thereof |
CN110127602A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method of applications catalyst decomposing hydrogen sulfide |
CN110127622A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method for improving hydrogen sulfide conversion ratio |
CN110127601A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | Low-temperature plasma reaction equipment and method for decomposing hydrogen sulfide |
CN110124477A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method of Catalyst packing method and decomposing hydrogen sulfide for decomposing hydrogen sulfide |
CN110127625A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method of joint carrier gas decomposing hydrogen sulfide |
CN110180383A (en) * | 2019-05-21 | 2019-08-30 | 山东三维石化工程股份有限公司 | Hydrogen sulfide sour gas sulphur hydrogen resource coordinating recyclable device and method |
CN110449180A (en) * | 2019-08-22 | 2019-11-15 | 南京林业大学 | A method of based on carbon molecular sieve load nano-titanium dioxide |
CN111377401A (en) * | 2018-12-29 | 2020-07-07 | 中国石油化工股份有限公司 | Multi-reaction-tube low-temperature plasma equipment and method for decomposing hydrogen sulfide |
CN111377410A (en) * | 2018-12-29 | 2020-07-07 | 中国石油化工股份有限公司 | Low-temperature plasma equipment and method for decomposing hydrogen sulfide |
CN112794327A (en) * | 2020-12-31 | 2021-05-14 | 中国科学院山西煤炭化学研究所 | A kind of method and device for preparing carbonyl sulfide from carbon dioxide and hydrogen sulfide mixed gas |
US20210260558A1 (en) * | 2020-02-26 | 2021-08-26 | Sogang University Research & Business Development Foundation | Dielectric barrier discharge plasma reactor comprising macroporous silica as dielectric material |
CN113457714A (en) * | 2021-07-15 | 2021-10-01 | 内蒙古工业大学 | Composite photocatalytic material and preparation method and application thereof |
CN113896176A (en) * | 2021-11-10 | 2022-01-07 | 贵州威顿晶磷电子材料股份有限公司 | Preparation process and preservation method of ultra-low-sulfur high-purity red phosphorus |
CN114280111A (en) * | 2021-12-24 | 2022-04-05 | 复旦大学 | Cerium-doped tungsten oxide composite material, hydrogen sulfide sensor and preparation method |
CN114749196A (en) * | 2022-04-27 | 2022-07-15 | 湘潭大学 | Core-shell microwave catalyst, preparation method and application thereof |
CN115367712A (en) * | 2022-09-20 | 2022-11-22 | 西南石油大学 | A method for producing hydrogen and elemental sulfur by photothermocatalytic decomposition of hydrogen sulfide |
CN115583630A (en) * | 2022-09-20 | 2023-01-10 | 西南石油大学 | Method for preparing synthesis gas by photo-thermal catalytic decomposition of hydrogen sulfide and carbon dioxide |
CN116002755A (en) * | 2022-12-26 | 2023-04-25 | 中国科学院山西煤炭化学研究所 | Method for preparing metal element modified molybdenum-based oxygen-sulfur compound |
US11691119B2 (en) | 2018-02-09 | 2023-07-04 | China Petroleum & Chemical Corporation | Low temperature plasma reaction device and hydrogen sulfide decomposition method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109012144B (en) * | 2018-07-19 | 2021-03-30 | 中国科学院大学 | Hexaaluminate composite oxide material in H2Application of S in catalytic decomposition reaction |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3933608A (en) * | 1974-08-27 | 1976-01-20 | The United States Of America As Represented By The Secretary Of The Interior | Method for the decomposition of hydrogen sulfide |
JPS5645802A (en) * | 1979-09-18 | 1981-04-25 | Agency Of Ind Science & Technol | Production of hydrogen from hydrogen sulfide |
CN101817501A (en) * | 2009-08-14 | 2010-09-01 | 陆海深 | Method for cyclic production of hydrogen through decomposition of hydrogen sulfide |
-
2011
- 2011-08-20 CN CN2011102405121A patent/CN102408095B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3933608A (en) * | 1974-08-27 | 1976-01-20 | The United States Of America As Represented By The Secretary Of The Interior | Method for the decomposition of hydrogen sulfide |
JPS5645802A (en) * | 1979-09-18 | 1981-04-25 | Agency Of Ind Science & Technol | Production of hydrogen from hydrogen sulfide |
CN101817501A (en) * | 2009-08-14 | 2010-09-01 | 陆海深 | Method for cyclic production of hydrogen through decomposition of hydrogen sulfide |
Non-Patent Citations (2)
Title |
---|
方宏萍等: "介质阻挡放电净化硫化氢气体的实验研究", 《环境污染与防治》, vol. 32, no. 2, 28 February 2010 (2010-02-28), pages 70 - 73 * |
马贵军等: "气_固相光催化分解硫化氢制氢", 《催化学报》, vol. 29, no. 4, 30 April 2008 (2008-04-30), pages 313 - 315 * |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103204466A (en) * | 2013-04-24 | 2013-07-17 | 滨州学院 | Device and method for preparing hydrogen through temperature controlled continuous decomposition of hydrogen sulfide |
CN103204467A (en) * | 2013-04-24 | 2013-07-17 | 滨州学院 | Device and method for continuously and steadily decomposing and making up hydrogen with hydrogen sulfide |
CN103495427A (en) * | 2013-10-17 | 2014-01-08 | 大连理工大学 | Method for using low-temperature plasma to prepare supported metal sulfide catalyst |
CN103495427B (en) * | 2013-10-17 | 2015-11-18 | 大连理工大学 | Low temperature plasma is utilized to prepare the method for load type metal sulfide catalyst |
WO2016074111A1 (en) * | 2014-11-15 | 2016-05-19 | 李建庆 | Temperature-controlled apparatus for hydrogen production by continuous decomposition of hydrogen sulfide |
CN106890674A (en) * | 2016-10-31 | 2017-06-27 | 环境保护部南京环境科学研究所 | A kind of catalyst and its preparation and application for removing hydrogen sulfide in biogas |
CN106890674B (en) * | 2016-10-31 | 2019-07-26 | 环境保护部南京环境科学研究所 | A kind of catalyst for removing hydrogen sulfide in biogas and its preparation and use method |
CN106622293A (en) * | 2016-12-30 | 2017-05-10 | 哈尔滨工业大学 | A kind of preparation method of H-TiO2/CdS/Cu2-xS nanobelt |
CN106622293B (en) * | 2016-12-30 | 2018-11-27 | 哈尔滨工业大学 | A kind of H-TiO2/CdS/Cu2-xThe preparation method of S nanobelt |
CN108342743A (en) * | 2017-01-23 | 2018-07-31 | 中国石油化工股份有限公司 | It is electrolysed the method and device of hydrogen sulfide preparing high purity hydrogen and sulphur |
CN108342743B (en) * | 2017-01-23 | 2020-09-08 | 中国石油化工股份有限公司 | Method and device for preparing high-purity hydrogen and sulfur by electrolyzing hydrogen sulfide |
CN107161947A (en) * | 2017-06-20 | 2017-09-15 | 中国科学院山西煤炭化学研究所 | Carbon dioxide and hydrogen sulfide gaseous mixture convert the method and device of producing synthesis gas |
CN107803208A (en) * | 2017-11-14 | 2018-03-16 | 湘潭大学 | A kind of microwave catalyst, its preparation method and the method that hydrogen sulfide is catalytically decomposed |
CN110127622A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method for improving hydrogen sulfide conversion ratio |
US11691119B2 (en) | 2018-02-09 | 2023-07-04 | China Petroleum & Chemical Corporation | Low temperature plasma reaction device and hydrogen sulfide decomposition method |
CN110127602A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method of applications catalyst decomposing hydrogen sulfide |
CN110127601A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | Low-temperature plasma reaction equipment and method for decomposing hydrogen sulfide |
CN110124477A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method of Catalyst packing method and decomposing hydrogen sulfide for decomposing hydrogen sulfide |
CN110127625A (en) * | 2018-02-09 | 2019-08-16 | 中国石油化工股份有限公司 | The method of joint carrier gas decomposing hydrogen sulfide |
CN110124477B (en) * | 2018-02-09 | 2021-06-25 | 中国石油化工股份有限公司 | Catalyst loading method for decomposing hydrogen sulfide and method for decomposing hydrogen sulfide |
CN110127602B (en) * | 2018-02-09 | 2020-09-25 | 中国石油化工股份有限公司 | Method for decomposing hydrogen sulfide by using catalyst |
CN108584884A (en) * | 2018-07-26 | 2018-09-28 | 山西铁峰化工有限公司 | A kind of device and method detaching carbon disulfide byproducts hydrogen sulfide using plasma |
CN109225273A (en) * | 2018-10-18 | 2019-01-18 | 中国计量大学 | A kind of copper sulfide/tungsten sulfide composite photo-catalyst and preparation method thereof |
CN109225273B (en) * | 2018-10-18 | 2021-03-23 | 中国计量大学 | Copper sulfide/tungsten sulfide composite photocatalyst and preparation method thereof |
CN109647378B (en) * | 2018-12-17 | 2021-08-31 | 福州大学 | A kind of preparation method of nanosheet self-assembled microsphere photocatalytic material for removing odor hydrogen sulfide |
CN109647378A (en) * | 2018-12-17 | 2019-04-19 | 福州大学 | It is a kind of for removing odors the preparation method of the nanometer sheet self assembly micron ball catalysis material of hydrogen sulfide |
CN111377401A (en) * | 2018-12-29 | 2020-07-07 | 中国石油化工股份有限公司 | Multi-reaction-tube low-temperature plasma equipment and method for decomposing hydrogen sulfide |
CN111377410A (en) * | 2018-12-29 | 2020-07-07 | 中国石油化工股份有限公司 | Low-temperature plasma equipment and method for decomposing hydrogen sulfide |
CN109772403B (en) * | 2019-01-23 | 2021-11-19 | 湘潭大学 | Method for catalytic decomposition of hydrogen sulfide by using coated catalyst |
CN109772403A (en) * | 2019-01-23 | 2019-05-21 | 湘潭大学 | A kind of coated catalyst is used for the method for catalytic decomposition of hydrogen sulfide |
CN109908883A (en) * | 2019-01-24 | 2019-06-21 | 华东师范大学 | Nanometer carbon-based metal oxide composite material with photoelectric catalytic function and preparation method thereof |
WO2020233030A1 (en) * | 2019-05-21 | 2020-11-26 | 山东三维石化工程股份有限公司 | Device and method for synergistic recover of sulfur and hydrogen resources from hydrogen sulfide acid gas |
CN110180383A (en) * | 2019-05-21 | 2019-08-30 | 山东三维石化工程股份有限公司 | Hydrogen sulfide sour gas sulphur hydrogen resource coordinating recyclable device and method |
CN110180383B (en) * | 2019-05-21 | 2022-02-25 | 山东三维化学集团股份有限公司 | Hydrogen sulfide acid gas and hydrogen sulfide resource cooperative recovery device and method |
CN110449180A (en) * | 2019-08-22 | 2019-11-15 | 南京林业大学 | A method of based on carbon molecular sieve load nano-titanium dioxide |
US20210260558A1 (en) * | 2020-02-26 | 2021-08-26 | Sogang University Research & Business Development Foundation | Dielectric barrier discharge plasma reactor comprising macroporous silica as dielectric material |
CN112794327B (en) * | 2020-12-31 | 2022-05-24 | 中国科学院山西煤炭化学研究所 | Method and device for preparing carbonyl sulfide from carbon dioxide and hydrogen sulfide mixed gas |
CN112794327A (en) * | 2020-12-31 | 2021-05-14 | 中国科学院山西煤炭化学研究所 | A kind of method and device for preparing carbonyl sulfide from carbon dioxide and hydrogen sulfide mixed gas |
CN113457714A (en) * | 2021-07-15 | 2021-10-01 | 内蒙古工业大学 | Composite photocatalytic material and preparation method and application thereof |
CN113896176A (en) * | 2021-11-10 | 2022-01-07 | 贵州威顿晶磷电子材料股份有限公司 | Preparation process and preservation method of ultra-low-sulfur high-purity red phosphorus |
CN113896176B (en) * | 2021-11-10 | 2023-09-26 | 贵州威顿晶磷电子材料股份有限公司 | Preparation process of ultralow-sulfur high-purity red phosphorus |
CN114280111A (en) * | 2021-12-24 | 2022-04-05 | 复旦大学 | Cerium-doped tungsten oxide composite material, hydrogen sulfide sensor and preparation method |
CN114280111B (en) * | 2021-12-24 | 2023-11-24 | 复旦大学 | Cerium-doped tungsten oxide composite material and hydrogen sulfide sensor, and preparation method |
CN114749196A (en) * | 2022-04-27 | 2022-07-15 | 湘潭大学 | Core-shell microwave catalyst, preparation method and application thereof |
CN115367712A (en) * | 2022-09-20 | 2022-11-22 | 西南石油大学 | A method for producing hydrogen and elemental sulfur by photothermocatalytic decomposition of hydrogen sulfide |
CN115583630A (en) * | 2022-09-20 | 2023-01-10 | 西南石油大学 | Method for preparing synthesis gas by photo-thermal catalytic decomposition of hydrogen sulfide and carbon dioxide |
CN116002755A (en) * | 2022-12-26 | 2023-04-25 | 中国科学院山西煤炭化学研究所 | Method for preparing metal element modified molybdenum-based oxygen-sulfur compound |
CN116002755B (en) * | 2022-12-26 | 2023-10-24 | 中国科学院山西煤炭化学研究所 | Method for preparing metal element modified molybdenum-based oxygen-sulfur compound |
Also Published As
Publication number | Publication date |
---|---|
CN102408095B (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102408095A (en) | A method for decomposing hydrogen sulfide to prepare hydrogen and elemental sulfur | |
WO2013158158A1 (en) | Methods for treating an offgas containing carbon oxides | |
CN104524934B (en) | A kind of method of microwave catalysis decomposing hydrogen sulfide hydrogen and sulphur | |
CN109821564B (en) | Preparation method of coated catalyst and catalyst | |
WO2013158161A1 (en) | Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream | |
CN101870455B (en) | Chain type hydrogen and oxygen production integrated method and device | |
CN103204467A (en) | Device and method for continuously and steadily decomposing and making up hydrogen with hydrogen sulfide | |
US20160039677A1 (en) | Direct combustion heating | |
CN109772403B (en) | Method for catalytic decomposition of hydrogen sulfide by using coated catalyst | |
EP4412949A1 (en) | Use of carbonaceous carrier material in bed reactors | |
CN110127623B (en) | Method for decomposing hydrogen sulfide by plasma | |
CN109759106B (en) | A kind of composite catalyst is used for the method for catalytic decomposition of hydrogen sulfide | |
US1895724A (en) | Process of removing sulphur compounds from gas mixtures | |
JP2022104521A (en) | Direct decomposition device for hydrocarbons and direct decomposition method | |
Wei et al. | Degradation of mixed typical odour gases via non-thermal plasma catalysis | |
TW200808440A (en) | Absorption composition and process for purifying streams of substances | |
CN112138654B (en) | Catalyst for hydromethanation of carbon dioxide and application thereof | |
JP5747326B2 (en) | Propylene production method | |
CN113546644A (en) | Preparation method and application of catalyst for deeply removing organic sulfur from coke oven gas | |
CN110124471B (en) | High flux low temperature plasma system for decomposing hydrogen sulfide and method for decomposing hydrogen sulfide | |
CN116605835B (en) | A method for improving the conversion rate of preparing synthesis gas by reacting hydrogen sulfide and carbon dioxide | |
CN110127622B (en) | Method for increasing hydrogen sulfide conversion rate | |
Hui et al. | Methane emission abatement by Pd-ion-exchanged zeolite 13X with ozone | |
CN110124477B (en) | Catalyst loading method for decomposing hydrogen sulfide and method for decomposing hydrogen sulfide | |
CN110127602B (en) | Method for decomposing hydrogen sulfide by using catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130130 |