CN102383095A - Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction - Google Patents
Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction Download PDFInfo
- Publication number
- CN102383095A CN102383095A CN2011103452844A CN201110345284A CN102383095A CN 102383095 A CN102383095 A CN 102383095A CN 2011103452844 A CN2011103452844 A CN 2011103452844A CN 201110345284 A CN201110345284 A CN 201110345284A CN 102383095 A CN102383095 A CN 102383095A
- Authority
- CN
- China
- Prior art keywords
- aluminum nitride
- flexible substrate
- sputtering
- magnetron sputtering
- nitride piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 88
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical group Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000010409 thin film Substances 0.000 title claims abstract description 17
- 238000000151 deposition Methods 0.000 title claims abstract description 16
- 238000004544 sputter deposition Methods 0.000 title claims description 26
- 230000008021 deposition Effects 0.000 title claims description 6
- 239000010408 film Substances 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 238000001816 cooling Methods 0.000 claims abstract description 22
- 238000005546 reactive sputtering Methods 0.000 claims abstract description 19
- 238000004140 cleaning Methods 0.000 claims abstract description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 45
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 23
- 229910052786 argon Inorganic materials 0.000 claims description 17
- -1 Polyethylene terephthalate Polymers 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 239000004642 Polyimide Substances 0.000 claims description 8
- 229920001721 polyimide Polymers 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002826 coolant Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229920006324 polyoxymethylene Polymers 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 claims description 3
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000005201 scrubbing Methods 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 238000010924 continuous production Methods 0.000 abstract description 3
- 239000012776 electronic material Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000005086 pumping Methods 0.000 description 4
- 238000005477 sputtering target Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- UKQJDWBNQNAJHB-UHFFFAOYSA-N 2-hydroxyethyl formate Chemical compound OCCOC=O UKQJDWBNQNAJHB-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明属于电子材料技术领域,特别是涉及一种柔性衬底上室温反应溅射沉积氮化铝压电薄膜的方法;其特征在于,包括以下步骤:清洗柔性衬底;抽真空;制备底金属层;充入工作气体;接通衬底冷却装置;紫外线在线辐照并反应溅射制备氮化铝压电薄膜;该方法的特点是衬底为柔性材料,制备的氮化铝压电薄膜可弯曲,膜层致密,不脱落,高c轴择优取向,并且具有制造工艺简单、可卷绕式(roll-to-roll)连续化生产、成本低廉的优点。
The invention belongs to the technical field of electronic materials, and in particular relates to a method for depositing an aluminum nitride piezoelectric thin film on a flexible substrate by reactive sputtering at room temperature; it is characterized in that it comprises the following steps: cleaning the flexible substrate; vacuuming; preparing the bottom metal layer; filling the working gas; connecting the substrate cooling device; ultraviolet on-line irradiation and reactive sputtering to prepare aluminum nitride piezoelectric film; the method is characterized in that the substrate is a flexible material, and the prepared aluminum nitride piezoelectric film can be It is curved, the film layer is dense, does not fall off, has a high c-axis preferred orientation, and has the advantages of simple manufacturing process, roll-to-roll continuous production, and low cost.
Description
技术领域 technical field
本发明属于电子材料技术领域,特别是涉及一种在柔性衬底上室温反应溅射沉积氮化铝压电薄膜的方法。 The invention belongs to the technical field of electronic materials, in particular to a method for depositing an aluminum nitride piezoelectric film on a flexible substrate by reactive sputtering at room temperature.
背景技术 Background technique
越来越多的电子器件朝着柔性化、超薄化的方向发展,有机柔性衬底氮化铝压电薄膜不但具有与硬性材料衬底氮化铝薄膜同样的压电特性,而且由于其可卷曲、可挠曲、重量轻、不易破碎、易于大面积生产、便于运输等独特优点,可以广泛应用于柔性薄膜体声波谐振、柔性声表面波谐振器和柔性传感器等领域,因此国际上对有机柔性衬底沉积氮化铝压电薄膜的需求日益迫切。 More and more electronic devices are developing in the direction of flexibility and ultra-thinness. The organic flexible substrate aluminum nitride piezoelectric film not only has the same piezoelectric characteristics as the hard material substrate aluminum nitride film, but also because it can The unique advantages of curling, flexibility, light weight, unbreakable, easy large-scale production, and convenient transportation can be widely used in the fields of flexible film bulk acoustic resonance, flexible surface acoustic wave resonators and flexible sensors. Therefore, organic The demand for depositing aluminum nitride piezoelectric thin films on flexible substrates is increasingly urgent. ``
传统制备氮化铝压电薄膜都是基于硬性衬底材料,如金刚石衬底(专利公开号CN 1257940A)、铝酸锂衬底(专利公开号CN 101235540A)、蓝宝石衬底(专利公开号 CN 101325240A)硅片及玻璃片衬底(专利公开号CN 101280412A)等。在这些公开专利中,所有的衬底均为硬性材料,质量大,不能弯曲,不能卷绕式(roll-to-roll)连续化生产,并且在制备氮化铝薄膜的工艺过程中都有一些共同的缺陷,就是衬底必须进行250°C以上温度的加热,其工艺难以适应低软化点的衬底。 The traditional preparation of aluminum nitride piezoelectric thin films is based on hard substrate materials, such as diamond substrate (patent publication number CN 1257940A), lithium aluminate substrate (patent publication number CN 101235540A), sapphire substrate (patent publication number CN 101325240A ) silicon and glass substrates (patent publication number CN 101280412A), etc. In these published patents, all the substrates are rigid materials, heavy, cannot be bent, and cannot be rolled-to-roll continuous production, and there are some problems in the process of preparing the aluminum nitride film. The common defect is that the substrate must be heated at a temperature above 250°C, and the process is difficult to adapt to the substrate with a low softening point.
有机柔性衬底不同于硬性衬底(如玻璃、蓝宝石、硅片),有着材质柔软、轻薄、可以弯曲、可以卷绕式(roll-to-roll)连续化生产等优点,但是软化点低、受热时容易在热应力的作用下发生形变,所以在柔性衬底上沉积压电氮化铝薄膜难以像在硬性衬底材料上那样可以高温沉积。低温沉积压电氮化铝薄膜就显得尤为重要。 Organic flexible substrates are different from rigid substrates (such as glass, sapphire, and silicon wafers) in that they have the advantages of being soft, thin, bendable, and roll-to-roll continuous production, but have low softening points, It is easy to deform under the action of thermal stress when heated, so it is difficult to deposit piezoelectric aluminum nitride films on flexible substrates at high temperatures as on hard substrate materials. Low temperature deposition of piezoelectric aluminum nitride film is particularly important.
发明内容 Contents of the invention
本发明的目的在于提供一种柔性衬底上室温反应溅射沉积氮化铝压电薄膜的方法。 The object of the present invention is to provide a method for depositing an aluminum nitride piezoelectric film on a flexible substrate by reactive sputtering at room temperature.
本发明是采用以下技术方案来实现上述目的:清洗柔性衬底;抽真空;制备底金属层;充入工作气体;接通衬底冷却装置;紫外线在线辐照并反应溅射制备氮化铝压电薄膜;各步骤的内容如下: The present invention uses the following technical solutions to achieve the above object: cleaning the flexible substrate; vacuuming; preparing the bottom metal layer; filling the working gas; connecting the substrate cooling device; Electric thin film; the content of each step is as follows:
清洗柔性衬底:将有机柔性衬底用电子清洗剂擦洗后,用去离子水超声清洗,再用无水乙醇超声清洗,然后干燥; Clean the flexible substrate: After scrubbing the organic flexible substrate with an electronic cleaner, ultrasonically clean it with deionized water, then ultrasonically clean it with absolute ethanol, and then dry it;
抽真空:将上述经清洗的柔性衬底紧贴在磁控溅射镀膜机的真空腔中的基片冷却装置表面,抽真空,使其真空度达到10-7~10-3 Pa; Vacuuming: Place the above-mentioned cleaned flexible substrate close to the surface of the substrate cooling device in the vacuum chamber of the magnetron sputtering coating machine, and vacuumize to make the vacuum degree reach 10 -7 ~ 10 -3 Pa;
制备底金属层:向磁控溅射镀膜机真空腔中动态地通入氩气,维持真空腔内氩气的压强在2×10-1~8×10-1 Pa范围内,采用磁控溅射的方法制备作为底电极或者过渡层的底金属层; Prepare the bottom metal layer: dynamically inject argon gas into the vacuum chamber of the magnetron sputtering coating machine, maintain the pressure of argon gas in the vacuum chamber within the range of 2×10 -1 ~ 8×10 -1 Pa, and use magnetron sputtering Prepare the bottom metal layer as the bottom electrode or the transition layer by the radiation method;
充入工作气体:采用流量控制器向磁控溅射镀膜机真空腔中动态地通入氮气和氩气的混合气体,氮氩比为0.3~2,工作气体总压强为3.8×10-1~5×10-1 Pa; Filling with working gas: use the flow controller to dynamically feed the mixed gas of nitrogen and argon into the vacuum chamber of the magnetron sputtering coating machine, the nitrogen-argon ratio is 0.3~2, and the total pressure of the working gas is 3.8×10 -1 ~ 5×10 -1 Pa;
接通基片冷却装置:对衬底进行冷却,使柔性衬底在溅射过程保持低温状态; Turn on the substrate cooling device: cool the substrate to keep the flexible substrate at a low temperature during the sputtering process;
紫外线在线辐照并反应溅射制备氮化铝压电薄膜:接通紫外辐照器进行在线辐照,并启动磁控溅射源,在已镀覆底金属层的柔性衬底上反应溅射沉积氮化铝薄膜;完成上述工艺后,向磁控溅射镀膜机真空腔中放入大气,取出样品。 Preparation of aluminum nitride piezoelectric film by online irradiation of ultraviolet rays and reactive sputtering: turn on the ultraviolet irradiator for online irradiation, and start the magnetron sputtering source, and reactively sputter on the flexible substrate coated with the bottom metal layer Deposit the aluminum nitride film; after the above process is completed, put the atmosphere into the vacuum chamber of the magnetron sputtering coating machine, and take out the sample.
所述的柔性衬底为:聚脂、聚酰亚胺、液晶聚合物、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚苯乙烯、聚甲醛、聚丙烯、聚氯乙烯、聚甲基丙烯酸甲脂、聚乙烯对苯二甲酯、聚丙烯己二酯、聚四氟乙烯、丙烯腈-苯乙烯-丁二烯共聚物、聚砜、尼龙中的任一种热稳定性优良、耐腐蚀性好的有机材料制成的薄膜,薄膜的厚度为5~200 um。 The flexible substrate is: polyester, polyimide, liquid crystal polymer, polyethylene terephthalate, polycarbonate, polystyrene, polyoxymethylene, polypropylene, polyvinyl chloride, polyformaldehyde Any one of methyl acrylate, polyethylene terephthalate, polypropylene adipate, polytetrafluoroethylene, acrylonitrile-styrene-butadiene copolymer, polysulfone, and nylon has excellent thermal stability, A film made of organic materials with good corrosion resistance, the thickness of the film is 5-200 um.
所述的柔性衬底紧贴在所述的冷却装置的平面基板上或者柱状圆筒面上,冷却剂是水、液氮、氟利昂中的一种。 The flexible substrate is closely attached to the plane base plate or the cylindrical surface of the cooling device, and the coolant is one of water, liquid nitrogen, and Freon.
所述的底金属层为:铝、金、银、铜、铁、铂、钛、镍、铬、钨、钼、锌、钴、锆、铌中的任意一种导电性能良好、与氮化铝匹配的金属材料,其厚度为10~500 nm。 The bottom metal layer is: any one of aluminum, gold, silver, copper, iron, platinum, titanium, nickel, chromium, tungsten, molybdenum, zinc, cobalt, zirconium, niobium with good electrical conductivity, and aluminum nitride The matching metal material has a thickness of 10-500 nm.
所述的紫外线辐照器是波长为10~400 nm,布置在真空钟罩内的紫外线灯或者是布置在真空钟罩外的激光器。 The ultraviolet irradiator is an ultraviolet lamp with a wavelength of 10-400 nm arranged inside the vacuum bell jar or a laser arranged outside the vacuum bell jar.
所述的磁控溅射源为平面靶磁控溅射源、柱型靶磁控溅射源、S-枪磁控溅射源或它们的孪生靶的一种。 The magnetron sputtering source is one of planar target magnetron sputtering source, cylindrical target magnetron sputtering source, S-gun magnetron sputtering source or their twin targets.
所述的氮化铝压电薄膜是采用直流溅射、射频溅射、中频溅射的一种磁控溅射方法制成的,溅射的功率密度为2~25 W/cm2,靶材到衬底的距离为5~10 cm,靶材为纯度99.999%的金属铝靶,氮化铝压电薄膜厚度为200~5000 nm。 The aluminum nitride piezoelectric thin film is made by a magnetron sputtering method such as DC sputtering, radio frequency sputtering and intermediate frequency sputtering. The sputtering power density is 2-25 W/cm 2 , and the target The distance to the substrate is 5-10 cm, the target material is a metal aluminum target with a purity of 99.999%, and the thickness of the aluminum nitride piezoelectric film is 200-5000 nm.
与现有技术相比,本发明的优点在于:由于采用紫外线在线辐照,大大提高了氮元素参与溅射分子的活性与迁移率,因而不必加热就能在柔性衬底上获得膜层致密、高c轴取向的氮化铝压电膜;柔性衬底无需加热,对基体不产生损伤。 Compared with the prior art, the present invention has the advantages of: due to the use of ultraviolet on-line irradiation, the activity and mobility of nitrogen elements participating in the sputtering molecules are greatly improved, so that the film layer can be dense and dense on the flexible substrate without heating. Aluminum nitride piezoelectric film with high c-axis orientation; flexible substrate does not need to be heated, and does not cause damage to the substrate.
附图说明 Description of drawings
图1是本发明的柔性衬底上室温反应溅射沉积氮化铝压电薄膜的设备之剖面示意图。 FIG. 1 is a schematic cross-sectional view of an apparatus for depositing aluminum nitride piezoelectric thin films on a flexible substrate by reactive sputtering at room temperature according to the present invention.
图2是本发明的柔性衬底上室温反应溅射沉积氮化铝压电薄膜示意图。 Fig. 2 is a schematic diagram of aluminum nitride piezoelectric film deposited on a flexible substrate by reactive sputtering at room temperature according to the present invention.
图3是实施例1所获得的样品的XRD图。 FIG. 3 is an XRD pattern of the sample obtained in Example 1.
图4 是实施例1所获得的样品的SEM图。
Fig. 4 is the SEM picture of the sample that
附图标号说明:1-冷却装置,1a-冷却剂,1b-柱状圆筒体,1c-柱状圆筒面,2-柔性衬底,3-底金属层,4-氮化铝压电薄膜,5-真空腔,6-透明视窗,7-激光器,8-紫外线灯,9-隔板,10-溅射氮化铝的磁控溅射靶,11-挡膜板,12-溅射底金属层的磁控溅射靶,13-真空抽气机组,14-氩气(Ar)流量控制器、15-氮气(N2)流量控制器。 Description of reference numerals: 1-cooling device, 1a-coolant, 1b-columnar cylinder, 1c-columnar cylinder surface, 2-flexible substrate, 3-bottom metal layer, 4-aluminum nitride piezoelectric film, 5-vacuum chamber, 6-transparent window, 7-laser, 8-ultraviolet lamp, 9-partition, 10-magnetron sputtering target for sputtering aluminum nitride, 11-baffle plate, 12-sputtering bottom metal Layer magnetron sputtering target, 13-vacuum pumping unit, 14-argon (Ar) flow controller, 15-nitrogen (N 2 ) flow controller.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步说明,但不应以此限制本发明的保护范围。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the protection scope of the present invention should not be limited thereby.
参照图1,这是制备本发明的柔性衬底上室温反应溅射沉积氮化铝压电薄膜的设备之剖面示意图,它包括真空腔5,连接在所述真空腔5上的真空抽气机组13,氩气和氮气的流量控制器14、15,溅射氮化铝和底金属层磁控溅射靶10、12,紫外线灯8或激光器7以及基片冷却装置1等部件。经过电子清洗剂擦洗、去离子水超声清洗和无水乙醇超声清洗并干燥后的柔性衬底2紧贴在所述冷却装置1的冷却表面1c上,冷却装置1可以是能够转动的平面结构或者能作卷绕运动的柱状圆筒结构,冷却剂可以是水、液氮、氟利昂的一种;所述的柔性衬底2为:聚脂、聚酰亚胺、液晶聚合物、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚苯乙烯、聚甲醛、聚丙烯、聚氯乙烯、聚甲基丙烯酸甲脂、聚乙烯对苯二甲酯、聚丙烯己二酯、聚四氟乙烯、丙烯腈-苯乙烯-丁二烯共聚物、聚砜、尼龙中的任一种热稳定性优良、耐腐蚀性好的有机材料制备的薄膜,柔性衬底厚度为5~200 um;在冷却装置1的上方分别布置了溅射底金属层3的磁控溅射靶12和溅射氮化铝压电薄膜4的磁控溅射靶10,溅射靶12与10之间设置了一个用来屏蔽另一个溅射靶膜层的可以转动的挡膜板11,所述的磁控溅射靶12、10为平面靶磁控溅射源、柱型靶磁控溅射源、S-枪磁控溅射源或它们的孪生靶的一种;在冷却装置1的上方还布置了一个进行在线辐照的紫外辐照器8或7,所述的紫外线辐照器是波长为10~400 nm的安装在真空腔内的紫外线灯8或者是布置在真空腔外的激光器7;为了防止紫外灯8被污染,在紫外灯8与溅射靶10之间还设置了一个用来挡膜的隔板9,如果采用激光器进行辐照,激光器7一般布置在真空腔体外,其激光束通过设置在真空腔体上的透明视窗6进入真空腔;真空抽气机组13、氩气(Ar)流量控制器14、氮气(N2)流量控制器15分别连接在真空腔体5上。
With reference to Fig. 1, this is the schematic sectional view of the equipment for preparing the room temperature reaction sputtering deposition aluminum nitride piezoelectric thin film on the flexible substrate of the present invention, it comprises vacuum chamber 5, the vacuum pumping unit that is connected on described vacuum chamber 5 13. Argon and
参照图2,这是本发明所制备的柔性衬底氮化铝压电薄膜示意图,它包括柔性衬底2和依次沉积在柔性衬底2上的底金属层3和氮化铝压电薄膜4.
With reference to Fig. 2, this is the flexible substrate aluminum nitride piezoelectric thin film prepared by the present invention schematic diagram, it comprises flexible substrate 2 and
再参照图1,当真空抽气机组13将装有柔性衬底2的真空腔体抽到10-7~10-3 Pa高真空后,氩气流量控制器14向磁控溅射镀膜机真空腔中动态地通入氩气,维持真空腔内氩气的压强在2×10-1~8×10-1 Pa范围内,采用磁控溅射的方法制备作为底电极或者过渡层的底金属层3;所述的底金属层为铝、金、银、铜、铁、铂、钛、镍、铬、钨、钼、锌、钴、锆、铌中的任意一种导电性能良好、与氮化铝匹配的金属材料,其厚度为10~500 nm,柔性压电薄膜做成器件时,一般都要在压电薄膜的两个表面镀覆电极,本步骤所制备的底金属膜层3既作为底电极,同时也过渡、匹配了柔性衬底与氮化铝薄膜的热力学特性。
Referring to Fig. 1 again, when the
镀完底金属层3后,通过流量控制器14、15向磁控溅射镀膜机真空腔中动态地通入氮气和氩气的混合气体,氮氩比为0.3~2,工作气体总压强为3.8×10-1~5×10-1 Pa。
After the
然后接通基片冷却装置1,对衬底进行冷却,使柔性衬底在溅射过程保持低温状态,避免柔性薄膜在后续工艺中产生热应力;本发明的整个过程中,柔性衬底2始终紧贴于冷却装置1的冷却表面1c上,冷却装置1可以是可以转动的平面结构或者可以卷绕运动的柱状圆筒结构。
Then connect the
接下来进行紫外线在线辐照并反应溅射制备氮化铝压电薄膜,开启紫外灯8辐照柔性衬底,或者开启激光器7对衬底进行扫描辐照,并启动溅射氮化铝的磁控溅射靶10,在已镀覆底金属层3的柔性衬底上反应溅射沉积氮化铝薄膜4。所述磁控溅射源为平面靶磁控溅射源、柱型靶磁控溅射源、S-枪磁控溅射源或它们的孪生靶的一种,溅射方法为直流磁控溅射、射频磁控溅射、中频磁控溅射、非平衡磁控溅射等中的一种,溅射所用的靶材为纯度99.999%的金属铝靶,溅射的功率密度为2~25 W/cm2,靶材到衬底的距离为5~10 cm,氮化铝压电薄膜厚度为200~5000 nm;所述的辐照器可以是波长为10~400 nm的紫外灯8或激光器7的一种,紫外辐照用来提高溅射粒子的活性与迁移速度,实现在室温下快速沉积择优取向的氮化铝薄膜。
Next, carry out ultraviolet on-line irradiation and reactive sputtering to prepare aluminum nitride piezoelectric thin films, turn on the ultraviolet lamp 8 to irradiate the flexible substrate, or turn on the laser 7 to scan and irradiate the substrate, and start the magnetic sputtering of aluminum nitride. A sputtering
实施本发明所用的柔性衬底如果刚生产的并经过真空包装,则不必进行清洗。 Flexible substrates used in the practice of the present invention do not need to be cleaned if they are freshly produced and vacuum packed.
完成上述工艺后,向磁控溅射镀膜机真空腔中放入大气,取出样品。 After the above process is completed, put the atmosphere into the vacuum chamber of the magnetron sputtering coating machine, and take out the sample.
实施例1 Example 1
将面积为10 cm × 10 cm的聚酰亚胺衬底用丙酮超声清洗后,用去离子水超声清洗2遍,再用无水乙醇超声清洗;然后用氮气吹干,贴于磁控溅射设备真空腔中的冷却平板上并抽真空,本底真空为5×10-4 Pa;通入氩气,调节流量,使得氩气气压为2.7×10-1 Pa;关闭衬底挡板,接通直流磁控溅射电源,调节功率为300 W,预溅金属铝靶20 min;打开挡板,在聚酰亚胺衬底上沉积底金属层铝,厚度为70 nm;关闭挡板,通入氩气和氧气,调节流量,使得氮氩比保持为3:2,工作总压强为3.8×10-1 Pa;接通放置于真空钟罩内工作波长为365 nm的紫外线灯进行在线紫外辐照;接通衬底冷却装置;采用直流磁控溅射,调节功率为260W,在沉积有金属过渡层的聚酰亚胺衬底上沉积氮化铝薄膜,溅射时间为1 h,在室温下所制备厚度为880 nm的氮化铝压电薄膜。然后向真空腔内放入大气,取出样品。图3是本实施例所得到的样品的XRD图谱,图中位于22.4°和26.1°的衍射峰为聚酰亚胺的峰,36°为氮化铝(002)衍射峰,38.4°为金属层铝(111)衍射峰,表明聚酰亚胺柔性衬底上低温生长了高c轴择优取向氮化铝压电薄膜。图4是本实施例所得样品的SEM图,由图可以看出氮化铝薄膜厚度为880 nm,膜层致密,晶粒程柱状生长。 A polyimide substrate with an area of 10 cm × 10 cm was ultrasonically cleaned with acetone, then ultrasonically cleaned with deionized water twice, and then ultrasonically cleaned with absolute ethanol; then dried with nitrogen and attached to the magnetron sputtering substrate. Put the vacuum on the cooling plate in the vacuum chamber of the equipment, the background vacuum is 5×10 -4 Pa; feed argon, adjust the flow rate, so that the pressure of argon is 2.7×10 -1 Pa; close the substrate baffle, connect Turn on the DC magnetron sputtering power supply, adjust the power to 300 W, and pre-sputter the metal aluminum target for 20 min; open the baffle, and deposit the bottom metal layer of aluminum on the polyimide substrate with a thickness of 70 nm; Inject argon and oxygen, adjust the flow rate so that the ratio of nitrogen and argon is maintained at 3:2, and the total working pressure is 3.8×10 -1 Pa; turn on the ultraviolet lamp with a working wavelength of 365 nm placed in the vacuum bell jar for online ultraviolet radiation Turn on the substrate cooling device; use DC magnetron sputtering, adjust the power to 260W, deposit aluminum nitride film on the polyimide substrate deposited with the metal transition layer, sputtering time is 1 h, at room temperature The aluminum nitride piezoelectric film with a thickness of 880 nm was prepared below. Then put the air into the vacuum chamber and take out the sample. Figure 3 is the XRD spectrum of the sample obtained in this example, in which the diffraction peaks at 22.4° and 26.1° are polyimide peaks, 36° is the aluminum nitride (002) diffraction peak, and 38.4° is the metal layer Aluminum (111) diffraction peaks, indicating that AlN piezoelectric films with high c-axis preferred orientation were grown on polyimide flexible substrates at low temperature. Fig. 4 is a SEM image of the sample obtained in this example. It can be seen from the figure that the thickness of the aluminum nitride film is 880 nm, the film layer is dense, and the grain-level columnar growth.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103452844A CN102383095A (en) | 2011-11-04 | 2011-11-04 | Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103452844A CN102383095A (en) | 2011-11-04 | 2011-11-04 | Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102383095A true CN102383095A (en) | 2012-03-21 |
Family
ID=45822919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103452844A Pending CN102383095A (en) | 2011-11-04 | 2011-11-04 | Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102383095A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881459A (en) * | 2012-10-11 | 2013-01-16 | 东北大学秦皇岛分校 | Large-area low-resistance solar cell conductive base and preparation method thereof |
CN103937098A (en) * | 2014-04-12 | 2014-07-23 | 安徽江威精密制造有限公司 | Metalized film with excellent overall performance for capacitor and preparation method thereof |
CN104101311A (en) * | 2014-06-23 | 2014-10-15 | 南京航空航天大学 | Ultrasonic sensor used for liquid layer thickness monitoring in mechanical structure |
WO2014205906A1 (en) * | 2013-06-25 | 2014-12-31 | 苏州奕光薄膜科技有限公司 | Film coating process for electronic device |
CN104498883A (en) * | 2014-11-27 | 2015-04-08 | 清华大学 | Method for depositing high c-axis orientation aluminum nitride membrane on flexible substrate |
CN104862659A (en) * | 2015-05-22 | 2015-08-26 | 电子科技大学 | Medium-frequency magnetron reactive sputtering method for aluminum nitride film |
CN106289044A (en) * | 2016-08-11 | 2017-01-04 | 上海脉感科技有限公司 | Sensor stand |
CN111006799A (en) * | 2019-11-25 | 2020-04-14 | 清华大学 | Flexible sensor device, its manufacturing method, and flexible monitoring device |
CN112770884A (en) * | 2018-06-19 | 2021-05-07 | Meld制造公司 | Solid state method of joining dissimilar materials and components and solid state additive manufacturing of coatings |
CN113832539A (en) * | 2020-06-08 | 2021-12-24 | 中国科学院宁波材料技术与工程研究所 | Flexible single crystal superconducting thin film, preparation method thereof and superconducting device |
CN114739281A (en) * | 2022-04-01 | 2022-07-12 | 中北大学 | Capacitive strain sensor and preparation method thereof |
CN115369364A (en) * | 2022-07-29 | 2022-11-22 | 松山湖材料实验室 | Curved surface film deposition method and device thereof |
CN115465885A (en) * | 2022-09-22 | 2022-12-13 | 南通南京大学材料工程技术研究院 | Highly oriented MAPbI 3 Preparation method of perovskite thin film and MAPbI 3 Perovskite thin film |
CN115652271A (en) * | 2022-11-15 | 2023-01-31 | 大连芯材薄膜技术有限公司 | Method and application of in-situ growth of composite film of wurtzite aluminum nitride base film and ultra-thin aluminum oxide protective layer on aluminum bottom electrode |
CN115679257A (en) * | 2022-11-15 | 2023-02-03 | 大连芯材薄膜技术有限公司 | Method for in-situ growth of (0002) texture wurtzite aluminum nitride-based film on (111) texture aluminum bottom electrode and application |
CN115725945A (en) * | 2022-11-15 | 2023-03-03 | 大连芯材薄膜技术有限公司 | Method for in-situ growth of ultrathin alumina protective layer on wurtzite aluminum nitride-based film surface and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001335918A (en) * | 2000-03-21 | 2001-12-07 | Tsuguo Ishihara | Method for depositing ito transparent electric conductive film |
CN101294272A (en) * | 2008-05-27 | 2008-10-29 | 浙江大学 | Method for room temperature sputtering deposition of indium tin oxide transparent conductive film on flexible substrate |
-
2011
- 2011-11-04 CN CN2011103452844A patent/CN102383095A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001335918A (en) * | 2000-03-21 | 2001-12-07 | Tsuguo Ishihara | Method for depositing ito transparent electric conductive film |
CN101294272A (en) * | 2008-05-27 | 2008-10-29 | 浙江大学 | Method for room temperature sputtering deposition of indium tin oxide transparent conductive film on flexible substrate |
Non-Patent Citations (1)
Title |
---|
李侃等: "射频反应溅射制备AlN薄膜的研究", 《传感技术学报》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881459A (en) * | 2012-10-11 | 2013-01-16 | 东北大学秦皇岛分校 | Large-area low-resistance solar cell conductive base and preparation method thereof |
WO2014205906A1 (en) * | 2013-06-25 | 2014-12-31 | 苏州奕光薄膜科技有限公司 | Film coating process for electronic device |
CN103937098A (en) * | 2014-04-12 | 2014-07-23 | 安徽江威精密制造有限公司 | Metalized film with excellent overall performance for capacitor and preparation method thereof |
CN103937098B (en) * | 2014-04-12 | 2016-06-08 | 安徽江威精密制造有限公司 | The electrical condenser metallized film of a kind of high comprehensive performance and its preparation method |
CN104101311A (en) * | 2014-06-23 | 2014-10-15 | 南京航空航天大学 | Ultrasonic sensor used for liquid layer thickness monitoring in mechanical structure |
CN104498883A (en) * | 2014-11-27 | 2015-04-08 | 清华大学 | Method for depositing high c-axis orientation aluminum nitride membrane on flexible substrate |
CN104498883B (en) * | 2014-11-27 | 2017-06-16 | 清华大学 | The method for depositing high c-axis orientation aluminium nitride film on flexible substrates |
CN104862659B (en) * | 2015-05-22 | 2017-09-26 | 电子科技大学 | A kind of medium frequency magnetron reaction sputtering method of aluminium nitride film |
CN104862659A (en) * | 2015-05-22 | 2015-08-26 | 电子科技大学 | Medium-frequency magnetron reactive sputtering method for aluminum nitride film |
CN106289044B (en) * | 2016-08-11 | 2018-12-07 | 上海脉感科技有限公司 | Sensor stand |
CN106289044A (en) * | 2016-08-11 | 2017-01-04 | 上海脉感科技有限公司 | Sensor stand |
CN112770884A (en) * | 2018-06-19 | 2021-05-07 | Meld制造公司 | Solid state method of joining dissimilar materials and components and solid state additive manufacturing of coatings |
CN111006799A (en) * | 2019-11-25 | 2020-04-14 | 清华大学 | Flexible sensor device, its manufacturing method, and flexible monitoring device |
CN113832539A (en) * | 2020-06-08 | 2021-12-24 | 中国科学院宁波材料技术与工程研究所 | Flexible single crystal superconducting thin film, preparation method thereof and superconducting device |
CN113832539B (en) * | 2020-06-08 | 2022-07-29 | 中国科学院宁波材料技术与工程研究所 | Flexible single crystal superconducting thin film, preparation method thereof and superconducting device |
CN114739281A (en) * | 2022-04-01 | 2022-07-12 | 中北大学 | Capacitive strain sensor and preparation method thereof |
CN115369364A (en) * | 2022-07-29 | 2022-11-22 | 松山湖材料实验室 | Curved surface film deposition method and device thereof |
CN115465885A (en) * | 2022-09-22 | 2022-12-13 | 南通南京大学材料工程技术研究院 | Highly oriented MAPbI 3 Preparation method of perovskite thin film and MAPbI 3 Perovskite thin film |
CN115652271A (en) * | 2022-11-15 | 2023-01-31 | 大连芯材薄膜技术有限公司 | Method and application of in-situ growth of composite film of wurtzite aluminum nitride base film and ultra-thin aluminum oxide protective layer on aluminum bottom electrode |
CN115679257A (en) * | 2022-11-15 | 2023-02-03 | 大连芯材薄膜技术有限公司 | Method for in-situ growth of (0002) texture wurtzite aluminum nitride-based film on (111) texture aluminum bottom electrode and application |
CN115725945A (en) * | 2022-11-15 | 2023-03-03 | 大连芯材薄膜技术有限公司 | Method for in-situ growth of ultrathin alumina protective layer on wurtzite aluminum nitride-based film surface and application |
CN115725945B (en) * | 2022-11-15 | 2025-01-24 | 大连芯材薄膜技术有限公司 | Method and application of in-situ growth of ultra-thin aluminum oxide protective layer on the surface of wurtzite aluminum nitride-based film |
CN115652271B (en) * | 2022-11-15 | 2025-03-28 | 大连芯材薄膜技术有限公司 | Method and application of in-situ growth of a composite film of a wurtzite aluminum nitride-based film and an ultra-thin aluminum oxide protective layer on an aluminum bottom electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102383095A (en) | Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction | |
CN108456850B (en) | Sandwich structure film and preparation method and application thereof | |
CN101294272A (en) | Method for room temperature sputtering deposition of indium tin oxide transparent conductive film on flexible substrate | |
CN107012439B (en) | A scandium-doped aluminum nitride film and its preparation method | |
CN105296924B (en) | High c-axis orientation aluminium nitride film and preparation method and application | |
CN101429643A (en) | Low temperature production method of transparent conductive oxide film | |
CN101164689A (en) | Nanocrystalline Porous TiO2 Thin Film and Its Preparation Method | |
CN104498883A (en) | Method for depositing high c-axis orientation aluminum nitride membrane on flexible substrate | |
CN105777800B (en) | The method that lead oxide film prepares organic perovskite methylamino lead iodide films | |
CN104962875A (en) | Preparation method of high-barrier film | |
JP3146112B2 (en) | Plasma CVD equipment | |
CN104934490B (en) | A kind of method that large area in situ synthesizes stannous oxide semiconductor optoelectronic thin-film material | |
Park et al. | Comparison of Electrochemical Luminescence Characteristics of Titanium Dioxide Films Prepared by Sputtering and Sol–Gel Combustion Methods | |
CN102010001A (en) | Preparation method of titanium dioxide cubic cone crystal | |
CN106011747B (en) | A kind of preparation method of flexibility thermosensitive film | |
CN103095244A (en) | Preferred orientation AIN piezoelectric film and preparation method thereof | |
CN103014653B (en) | Preparation method of surface acoustic wave filter device with AlN/GAZO/self-supporting diamond film structure | |
CN102286722B (en) | Preparation method of zinc oxide/diamond-like carbon surface acoustic wave device composite film | |
CN107540402B (en) | Preparation method of porous copper calcium titanate film | |
CN110512194A (en) | Star-shaped microwave plasma chemical vapor deposition device and method for preparing large-area two-dimensional materials | |
CN108505006A (en) | A method of using the pure Ti films of magnetron sputtering deposition nanometer | |
CN103361613A (en) | Method for preparing column-shaped nano-tungsten | |
CN105803407A (en) | Preparation method of aluminum nitride coating adjustable in relative permittivity | |
CN101748366B (en) | Ultra-fine grain metal membrane or ultra-fine grain alloy membrane and preparation method thereof | |
CN103839759A (en) | Field emission light source cathode, manufacturing method thereof and field emission light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120321 |