CN102249223B - 微粒多晶金刚石烧结体的制备方法 - Google Patents

微粒多晶金刚石烧结体的制备方法 Download PDF

Info

Publication number
CN102249223B
CN102249223B CN201110089094.0A CN201110089094A CN102249223B CN 102249223 B CN102249223 B CN 102249223B CN 201110089094 A CN201110089094 A CN 201110089094A CN 102249223 B CN102249223 B CN 102249223B
Authority
CN
China
Prior art keywords
diamond
diamond powder
fine grain
grain polycrystalline
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110089094.0A
Other languages
English (en)
Other versions
CN102249223A (zh
Inventor
A·E·瓦多尤
田岛逸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN102249223A publication Critical patent/CN102249223A/zh
Application granted granted Critical
Publication of CN102249223B publication Critical patent/CN102249223B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明提供无需进行防止形成二次粒子的冷冻干燥、无需预先混合助剂的、适用于精加工切削工具材料、超精密加工工具材料等的微粒多晶金刚石烧结体的制备方法。该方法如下:在平均粒径4μm以下的金刚石粉末的层间经由含有碳酸盐和室温下为固体的C-H类有机物、优选选自聚乙烯、聚丙烯和聚苯乙烯中的一种以上的片进行层合,将其装入Ta制容器内,于7.7GPa以上的烧结压力和2000℃以上的烧结温度下烧结,无需将烧结原料金刚石粉末冷冻干燥,也无需使用剧毒物草酸二水合物,并且无需进行烧结助剂的预先混合,即可制备微粒多晶金刚石烧结体。

Description

微粒多晶金刚石烧结体的制备方法
技术领域
本发明涉及无需烧结原料金刚石粉末的冷冻干燥、无需助剂与剧毒物草酸二水合物等预先混合的微粒多晶金刚石烧结体的制备方法。 
背景技术
目前,利用金刚石的非导电性,且硬度、导热性、耐热性高,化学稳定性优异等的特性,应用于电子装置·传感材料、生物相关材料、光学相关材料、耐磨材料等领域,例如金刚石烧结体发挥其硬度、耐磨性等,可应用于精加工切削工具、超精密加工工具等,发挥优异的切削性能。 
作为上述金刚石烧结体的制备方法,例如如专利文献1所示,提出了以下的微粒金刚石烧结体制备方法:将碳酸盐与形成超临界流体相的有机物的混合物用作烧结助剂,在层合在金刚石粉末层上的状态下,在金刚石热力学稳定的2000℃以上的高压高温条件下烧结。 
但是,该制备方法中,是使用例如草酸二水合物作为上述形成超临界流体相的有机物,草酸二水合物是剧毒物,而且必须将其与碳酸盐预先混合,配制烧结助剂,因此其处理困难,在实现实际应用方面有障碍。 
作为其它的制备方法,例如如专利文献2所示,提出:在将天然金刚石粉末进行脱硅酸盐处理的最终工序,将分散有该金刚石粉末的pH 3-5的水溶液加入到容器中,振荡处理,在该容器中,用液氮冷冻分散有该金刚石粉末的水溶液,直接冷冻干燥而获得该金刚石粉末,使用混合了有机物(草酸二水合物)的碳酸盐烧结助剂,通过超高压合成装置将所得的该金刚石粉末在1700℃以上的温度下烧结。 
但是,该制备方法中,作为烧结体原料的金刚石粉末的二次粒子形成受到抑制,虽然可得到比较均匀的金刚石烧结体,但是必须有冷冻干燥工序,预先的处理繁杂,并且使用有机物(草酸二水合物)作为预先混合的烧结助剂的问题依然存在。 
现有技术文献 
专利文献 
专利文献1:日本专利3550587号说明书 
专利文献2:日本专利4014415号说明书 
发明内容
发明所需解决的课题
本发明的目的在于提供无需进行防止形成二次粒子的冷冻干燥、无需使用剧毒有机物(草酸二水合物)、并且无需预先混合助剂的、适用于精加工切削工具材料、超精密加工工具材料等的微粒多晶金刚石烧结体的制备方法。 
解决课题的手段
本发明者为解决上述课题,对于金刚石烧结体制备中使用的烧结助剂进行了深入研究,得到以下认识。 
在例如专利文献2的以往的金刚石烧结体的制备方法中,预先配制烧结助剂,该烧结助剂含有将碳酸盐(例如碳酸镁、碳酸钙等)与形成超临界流体相的有机物(草酸二水合物)预先混合得到的混合物,自Ta制容器底依次层合石墨制圆板、Ta箔、金刚石粉末、碳酸盐-有机物混合粉末、金刚石粉末、Ta箔、金刚石粉末、碳酸盐-有机物混合粉末…,将该Ta制容器用超高压合成装置烧结,得到金刚石烧结体。 
本发明者对金刚石烧结体制备中使用的烧结助剂进行研究,发现:除以往使用的草酸二水合物之外,通过使用室温下为固体的C-H 类有机物,即使在使用平均粒径4μm以下的金刚石粉末作为烧结体原料粉末时,也可以制备烧结体,并且可避免使用剧毒物,可确保安全性,同时无需与碳酸盐的预先混合来配制烧结助剂,因此操作性提高。 
作为室温下为固体的C-H类有机物,具体优选聚乙烯、聚丙烯、聚苯乙烯的一种或两种以上,这些C-H类有机物在烧结金刚石时成为超临界流体相,清洗金刚石颗粒的表面,分解金刚石粉末的二次粒子。并且发现:碳酸盐容易溶浸入金刚石颗粒间,溶浸的C-H类有机物和碳酸盐高效溶解金刚石颗粒的一部分,从被碳过饱和的熔融碳酸盐中析出金刚石,在金刚石颗粒间形成直接结合,结果不形成二次粒子即可合成微粒多晶金刚石烧结体。 
本发明基于上述认识完成,具有下述特征: 
“(1)微粒多晶金刚石烧结体的制备方法,其特征在于:在平均粒径4μm以下的金刚石粉末的层间经由碳酸盐和催化剂进行层合,所述催化剂含有相对于金刚石粉末为1/5000-1/1000的重量比、室温下为固体的C-H类有机物;将它们于7.7GPa以上的烧结压力和2000℃以上的烧结温度下烧结。 
(2)上述(1)微粒多晶金刚石烧结体的制备方法,其中,上述室温下为固体的C-H类有机物为选自聚乙烯、聚丙烯和聚苯乙烯中的一种或两种以上。” 
下面更具体地详细说明本发明。 
图1表示:在本发明的微粒多晶金刚石烧结体的制备方法中,使用碳酸镁作为碳酸盐,使用聚乙烯作为室温下为固体的C-H类有机物时,Ta制容器内的金刚石粉末、碳酸镁(碳酸盐)和聚乙烯(室温下为固体的C-H类有机物)相互的层合状态的概略截面图。 
图1中表示自Ta制容器底部向上方依次层合石墨圆盘(厚度:1mm)、聚乙烯(0.2mg)、平均粒径4μm以下的金刚石粉末(0.45g)、碳酸镁(0.2g)、聚乙烯(0.2mg)、平均粒径4μm以下的金刚石粉末(0.45 g)、石墨圆盘(厚度:1mm)的概略图,本发明中,在将烧结用原料如上所述地层合在Ta容器内的状态下,于作为金刚石稳定区域的7.7GPa以上的烧结压力和2000℃以上的烧结温度下烧结,由此制备微粒多晶金刚石烧结体。 
金刚石粉末: 
作为烧结体原料的金刚石粉末可使用不限于气相合成法的目前已知的方法制备的金刚石粉末。 
本发明中,关于金刚石粉末的尺寸,规定为平均粒径4μm以下,如果是金刚石粉末的平均粒径超过4μm的粗粒,则可以不使用草酸二水合物作为烧结助剂,而只用碳酸盐烧结,因此本发明中,作为烧结体原料的金刚石粉末的平均粒径规定为4μm以下。 
烧结助剂: 
作为碳酸盐,可以使用以往使用的碳酸镁、碳酸钙等。 
以往,例如必须是将预先使碳酸盐和形成超临界流体相的草酸二水合物混合得到的烧结助剂***介于金刚石层之间,但本发明中,如图1所示的层合状态那样地将原料粉末层合在Ta容器内,因此无需将碳酸盐(例如碳酸镁)与室温下为固体的C-H类有机物(例如聚乙烯)预先混合,可以使各层独立地介于金刚石层之间。 
本发明中使用的室温下为固体的C-H类有机物优选聚乙烯、聚丙烯、聚苯乙烯,C-H类以外的有机物、例如聚氯乙烯中,Cl妨碍金刚石颗粒之间的直接结合,而在聚四氟乙烯的情况下,F妨碍金刚石颗粒之间的直接结合,因此应避免使用C-H类以外的有机物。 
本发明中使用的室温下为固体的C-H类有机物的使用量以重量比表示时,必须是(室温下为固体的C-H类有机物的使用量)/(金刚石粉末的重量)=1/5000-1/1000 室温下为固体的C-H类有机物少,重量比小于该値(比値低于1/5000)时,则在金刚石层中,对金刚石颗粒表面的清洗效果小,对金刚石层中的溶浸不充分,二次粒子的分解效果也小,金刚石颗粒相互之间的直接结合不充分。另一方面,若室温下为固体的C-H类有机物的使用量增加、上述比値超过1/1000,则不仅金刚石烧结体的强度、硬度降低,耐热性也降低,因此室温下为固体的C-H类有机物的使用量(重量)相对于金刚石粉末重量的比値必须是1/5000-1/1000。超高压高温装置中的烧结: 
本发明中,如图1所示的层合状态,将原料粉末层合在Ta容器内,然后在金刚石的稳定区的7.7GPa以上的烧结压力、2000℃以上的烧结温度的条件下,用10-30分钟处理,可再现性良好地合成微粒多晶金刚石烧结体。 
需说明的是,若压力低于7.7Gpa,则金刚石不处于稳定区,因此无法烧结,另一方面,若压力超过8Gpa,则缺乏生产性,装置也大型化,因此优选烧结压力为7.7-8Gpa的范围。 
若烧结温度低于2000℃,则碳酸盐未充分溶浸到金刚石层中,因此烧结困难,另一方面,若烧结温度超过2500℃,则金刚石转变为石墨,因此烧结温度优选2000-2500℃的范围。 
发明效果 
根据本发明的微粒多晶金刚石烧结体的制备方法,可以利用平均粒径4μm以下的微粒金刚石粉末(例如天然金刚石粉末),无需将作为烧结体原料的金刚石粉末冷冻干燥,因此可以减少原料准备的工序数,另外,使用非剧毒物的、室温下为固体的C-H类有机物(例如市售的聚乙烯片),因此可确保安全性,并减轻对环境负担,并且,无需预先混合配制烧结助剂,因此操作性有望提高。 
附图简述 
图1表示本发明的制备方法中,Ta制容器内的金刚石粉末、碳酸镁(碳酸盐)和聚乙烯(室温下为固体的C-H类有机物)相互的层合状态的概略截面图。 
实施发明的方式 
以下使用实施例说明本发明。 
实施例
作为烧结体原料的金刚石粉末使用平均粒径4μm以下的天然金刚石粉末。 
需说明的是,天然金刚石粉末含有大量硅酸盐,因此,预先用Zr坩埚、在熔融NaOH中进行天然金刚石粉末的脱硅酸盐处理,然后进一步将金刚石粉末在热王水中处理,由此除去从坩埚中混入的Zr。 
接着,准备金刚石粉末、碳酸盐以及室温下为固体的C-H类有机物以使其分别为表1的本发明1-6所示的比例,填充到Ta容器内以形成图1所示的层合结构,将其装入常规带式超高压高温装置中,同样地以表2所示的压力、温度进行烧结,由此制备本发明的微粒多晶金刚石烧结体(以下称为本发明1-6)。 
对于上述本发明1-6,在进行硬度测定的同时进行耐热试验,然后通过XRD(X射线)分析,调查热处理后有无石墨化(金刚石的逆转变)、烧结体内部有无裂缝。 
需说明的是,硬度测定是使用维氏硬度计测定,耐热性试验通过使用真空炉在温度1200℃下保持30分钟实施热处理来进行。 
表2表示测定结果、试验结果。 
为了进行比较,使用与本发明1-6同样的作为烧结体原料的金刚石粉末,准备金刚石粉末、碳酸盐以及室温下为固体的C-H类有机物以使其分别为表1的比较例1-4所示的比例,填充到Ta容器内以形成图1所示的层合结构,将其装入常规带式超高压高温装置中,同样地 以表2所示的压力、温度进行烧结,由此制备比较例的金刚石烧结体(以下称为比较例1-4)。 
对于上述比较例1-4,也与本发明1-6同样地进行硬度测定、耐热试验,调查热处理后有无石墨化(金刚石的逆转变)、烧结体内部有无裂缝。 
表2表示其测定结果、试验结果。 
另外,为了参考,使用与本发明1-6同样的、作为烧结体原料的金刚石粉末,准备金刚石粉末、碳酸盐和聚氯乙烯或聚氟乙烯以使其分别为表3所示比例,填充到Ta容器内以形成图1所示的层合结构,将其装入常规带式超高压高温装置中,同样地以表4所示的压力、温度进行烧结,由此制备参考例的金刚石烧结体(以下称为参考例1、2)。 
对于上述参考例1、2,也与本发明1-6同样地进行硬度测定、耐热试验,调查热处理后有无石墨化(金刚石的逆转变)、烧结体内部有无裂缝。 
表4表示其测定结果、试验结果。 
表1 
(注)*表示在本发明的范围以外 
表2 
(注)*表示在本发明的范围以外 
表3 
表4 
由表2、表4所示的各特性的比较可知,本发明1-6硬度高,即使进行耐热试验也不发生石墨化,烧结体内部也没有裂缝,因此是具有完善的烧结体组织、且耐热性优异的微粒多晶金刚石烧结体。 
与此相对,比较例1、2中,室温下为固体的C-H类有机物的使用量在本发明规定的范围外,因此烧结体内部产生裂缝,并且在测定硬度时,压痕周边剥离,无法进行准确的硬度测定。比较例3、4中,烧结条件在本发明规定的范围外,因此,不仅烧结体内部产生裂缝,还发生石墨化,基于与比较例1、2同样的理由无法进行准确的硬度测定。 
参考例1、2中,C-H以外(Cl等)的元素残留在金刚石颗粒间,妨碍金刚石颗粒间的直接结合,未得到硬度高的烧结体,另外,如果进行热处理,则立即产生裂缝,与比较例1-4同样,测定硬度时,压痕周边剥离,无法进行准确的硬度测定。 
如上所述,根据本发明的制备方法,使用平均粒径4μm以下的微粒金刚石粉末,无需将金刚石粉末冷冻干燥,可以使用不是剧毒物的室温下为固体的C-H类有机物,无需预先混合配制烧结助剂,因此,通过简易的制备工序,即可得到具有完善的烧结体组织、且耐热性优异的微粒多晶金刚石烧结体。 
产业实用性 
根据本发明的微粒多晶金刚石烧结体的制备方法,从减少工序数、确保安全性、降低环境影响、提高操作性的角度考虑,实际应用的效果极大,有望在广阔技术领域中应用。 

Claims (2)

1.微粒多晶金刚石烧结体的制备方法,其特征在于,自底部向上方依次层合:
平均粒径4 μm以下的金刚石粉末,
碳酸盐,
催化剂,所述催化剂含有相对于金刚石粉末为1/5000-1/1000的重量比、室温下为固体的C-H类有机物,和
平均粒径4 μm以下的金刚石粉末;
将它们于7.7 GPa以上的烧结压力和2000℃以上的烧结温度下烧结。
2.权利要求1的微粒多晶金刚石烧结体的制备方法,其中,上述室温下为固体的C-H类有机物为选自聚乙烯、聚丙烯和聚苯乙烯中的一种或两种以上。
CN201110089094.0A 2010-03-31 2011-03-31 微粒多晶金刚石烧结体的制备方法 Expired - Fee Related CN102249223B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010080019 2010-03-31
JP2010-080019 2010-03-31
JP2010278017A JP5500508B2 (ja) 2010-03-31 2010-12-14 微粒多結晶ダイヤモンド焼結体の製造法
JP2010-278017 2010-12-14

Publications (2)

Publication Number Publication Date
CN102249223A CN102249223A (zh) 2011-11-23
CN102249223B true CN102249223B (zh) 2015-03-11

Family

ID=44708702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110089094.0A Expired - Fee Related CN102249223B (zh) 2010-03-31 2011-03-31 微粒多晶金刚石烧结体的制备方法

Country Status (3)

Country Link
US (1) US8753562B2 (zh)
JP (1) JP5500508B2 (zh)
CN (1) CN102249223B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422770B2 (en) 2011-12-30 2016-08-23 Smith International, Inc. Method for braze joining of carbonate PCD
US9475176B2 (en) 2012-11-15 2016-10-25 Smith International, Inc. Sintering of thick solid carbonate-based PCD for drilling application
US11306542B2 (en) * 2013-09-11 2022-04-19 Schlumberger Technology Corporation Thermally stable polycrystalline diamond and methods of making the same
DE102015208491B4 (de) * 2014-05-08 2019-03-14 Sumitomo Electric Industries, Ltd. Polykristalliner Diamantkörper, Schneidwerkzeug, verschleißfestes Werkzeug, Schleifwerkzeug und Verfahren zum Herstellen eines polykristallinen Diamantkörpers
US10350734B1 (en) 2015-04-21 2019-07-16 Us Synthetic Corporation Methods of forming a liquid metal embrittlement resistant superabrasive compact, and superabrasive compacts and apparatuses using the same
EP3743630B1 (en) * 2018-01-23 2024-06-19 US Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, and method for manufacturing a bearing assembly
JP6421905B1 (ja) * 2018-07-20 2018-11-14 住友電気工業株式会社 ダイヤモンド多結晶体及びそれを備えた工具
CN113853363B (zh) * 2019-01-16 2023-04-11 斯伦贝谢技术有限公司 发光金刚石

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259090A (en) * 1979-11-19 1981-03-31 General Electric Company Method of making diamond compacts for rock drilling
US5128080A (en) * 1990-08-30 1992-07-07 Hughes Tool Company Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
US7678325B2 (en) * 1999-12-08 2010-03-16 Diamicron, Inc. Use of a metal and Sn as a solvent material for the bulk crystallization and sintering of diamond to produce biocompatbile biomedical devices
JPH09157024A (ja) * 1995-11-30 1997-06-17 Sumitomo Electric Ind Ltd ダイヤモンド焼結体の製造方法
US7569176B2 (en) * 1999-12-08 2009-08-04 Diamicron, Inc. Method for making a sintered superhard prosthetic joint component
US7556763B2 (en) * 1999-12-08 2009-07-07 Diamicron, Inc. Method of making components for prosthetic joints
GB2365025B (en) * 2000-05-01 2004-09-15 Smith International Rotary cone bit with functionally-engineered composite inserts
JP3550587B2 (ja) * 2000-12-18 2004-08-04 独立行政法人 科学技術振興機構 微粒ダイヤモンド焼結体の製造方法
JP4014415B2 (ja) 2002-02-07 2007-11-28 独立行政法人科学技術振興機構 高硬度微粒ダイヤモンド焼結体の製造法
JP3855029B2 (ja) * 2002-11-15 2006-12-06 独立行政法人科学技術振興機構 透光性超微粒ダイヤモンド焼結体の製造法
JP3877677B2 (ja) * 2002-12-18 2007-02-07 独立行政法人科学技術振興機構 耐熱性ダイヤモンド複合焼結体とその製造法
JP4939932B2 (ja) * 2004-03-29 2012-05-30 電気化学工業株式会社 窒化アルミニウム粉末及びその製造方法
US7493973B2 (en) * 2005-05-26 2009-02-24 Smith International, Inc. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US7635035B1 (en) * 2005-08-24 2009-12-22 Us Synthetic Corporation Polycrystalline diamond compact (PDC) cutting element having multiple catalytic elements
JP4811853B2 (ja) * 2005-09-06 2011-11-09 独立行政法人物質・材料研究機構 高純度立方晶窒化ホウ素焼結体の製造法
JP2008007469A (ja) * 2006-06-30 2008-01-17 Fujifilm Corp 炭酸エステル及びその製造方法、並びに、磁気記録媒体
US8663349B2 (en) * 2008-10-30 2014-03-04 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
EP2354110B1 (en) * 2010-02-09 2014-06-25 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
US20130084474A1 (en) * 2010-03-18 2013-04-04 Randell L. Mills Electrochemical hydrogen-catalyst power system
EP2734325A1 (en) * 2011-07-20 2014-05-28 US Synthetic Corporation Polycrystalline diamond compact including a carbonate-catalysed polycrystalline diamond table and applications therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Physical and chemical properties of the heat resistant diamond compacts from diamond-magnesium carbonate system;Minoru Akaishi. et al.;《Materials Science and Engineering》;19961231;第A209卷;54-59 *

Also Published As

Publication number Publication date
US8753562B2 (en) 2014-06-17
JP5500508B2 (ja) 2014-05-21
CN102249223A (zh) 2011-11-23
JP2011225420A (ja) 2011-11-10
US20110241266A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
CN102249223B (zh) 微粒多晶金刚石烧结体的制备方法
Hayun et al. Microstructural evolution during the infiltration of boron carbide with molten silicon
Gonzalez-Julian et al. Effect of sintering method on the microstructure of pure Cr2AlC MAX phase ceramics
Herrmann et al. Diamond-ceramics composites—New materials for a wide range of challenging applications
Liu et al. Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis
Zhou et al. Fabrication and characterization of pure porous Ti3SiC2 with controlled porosity and pore features
ZA200504183B (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
US9926204B2 (en) Mechanochemical synthesis of hexagonal OsB2
RU2014152850A (ru) Способ изготовления материала кнб
CA2858145A1 (en) Methods of improving sintering of pcd using graphene
CN104039738A (zh) 金刚石复合材料和制造金刚石复合材料的方法
CN109437915A (zh) 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用
Yang et al. Synthesis and sintering of silicon nitride nano-powders via sodium reduction in liquid ammonia
Liu et al. Novel synthesis method and characterization of porous calcium hexa‐aluminate ceramics
Li et al. Novel two-step sintering and in situ bonding method for fabrication of ZrP2O7 ceramics
Wang et al. Novel Nitride Materials Synthesized at High Pressure
JP2005089252A (ja) 金属性セラミック焼結体チタンシリコンカーバイド及びその製造方法
Jiao et al. Synthesis of boron suboxide from boron and boric acid under mild pressure and temperature conditions
RU2547485C1 (ru) Способ получения сверхтвердого композиционного материала
Morito et al. Synthesis of NaB5C bulk ceramics by reaction sintering
CN105565818B (zh) 一种碳氮化钛致密陶瓷的烧结方法
Zhang et al. Influences of sintering temperature on chemical reaction and microstructure in Al2O3–Ti (C0. 7N0. 3)–cBN composite
Ambach et al. Nitride Synthesis under High-Pressure, High-Temperature Conditions: Unprecedented In Situ Insight into the Reaction
JP2004168558A (ja) 高硬度超微粒ダイヤモンド複合焼結体とその製造法
CN106495156B (zh) 一种制备碳化锆纳米粉体的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150311

CF01 Termination of patent right due to non-payment of annual fee