CN102219263A - 一种制备γ-MnOOH纳米棒的方法 - Google Patents
一种制备γ-MnOOH纳米棒的方法 Download PDFInfo
- Publication number
- CN102219263A CN102219263A CN2011101318573A CN201110131857A CN102219263A CN 102219263 A CN102219263 A CN 102219263A CN 2011101318573 A CN2011101318573 A CN 2011101318573A CN 201110131857 A CN201110131857 A CN 201110131857A CN 102219263 A CN102219263 A CN 102219263A
- Authority
- CN
- China
- Prior art keywords
- mnooh
- nanorods
- mixed solution
- coo
- lioh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229910003174 MnOOH Inorganic materials 0.000 title description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 24
- 229910006290 γ-MnOOH Inorganic materials 0.000 claims abstract description 24
- 239000002073 nanorod Substances 0.000 claims abstract description 21
- 239000011259 mixed solution Substances 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 239000002244 precipitate Substances 0.000 claims abstract description 9
- 239000000243 solution Substances 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 239000011572 manganese Substances 0.000 claims description 10
- 229940071125 manganese acetate Drugs 0.000 claims description 5
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 3
- 239000012467 final product Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 8
- 239000002086 nanomaterial Substances 0.000 description 6
- 238000001027 hydrothermal synthesis Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种制备γ-MnOOH纳米棒的方法,包括以下步骤:1)按LiOH·H2O与Mn(CH3COO)2·4H2O摩尔比为0.2~1取LiOH·H2O和Mn(CH3COO)2·4H2O,用去离子水溶解得到混合溶液;2)将步骤1)中混合溶液搅拌10小时~36小时后得到含棕色沉淀的溶液,经抽滤和干燥,得到γ-MnOOH纳米棒。该方法实现了在低温下制备γ-MnOOH纳米棒,具有工艺简单、成本低、周期短、低能耗、无污染等优点,适合工业化生产;制备的γ-MnOOH纳米棒尺寸分布比较均匀,无任何杂质。
Description
技术领域
本发明涉及金属化合物的制备领域,具体涉及一种制备γ-MnOOH纳米棒的方法。
背景技术
锰的氢氧化物在催化剂、分子筛、离子交换、分子吸附、电化学、生物传感器、电致变色显示器等方面都有十分重要的应用,尤其是其催化性能受到广泛重视。在众多的锰的化合物中,γ-MnOOH因其表面有较多的活性点,具有更高的催化活性;而在不同形貌的γ-MnOOH中,一维纳米材料如纳米棒、纳米线等备受注目。这是因为,一维纳米材料的电学输运性能随其所处的环境、吸附物质的变化而变;一维纳米材料的表面积和体积之比非常高,且具有极强的表面效应和量子效应,对气体响应较为灵敏;另外,一维纳米材料具有各向异性,表现出来奇特的物理、化学特征。许多情况下,一维纳米结构的材料比其他相应的体相材料要优越得多,尺寸、组成和结晶度可控的一维纳米结构材料已经成为研究结构与性能的关系以及相关应用的非常有吸引力的体系。
现有技术中,制备γ-MnOOH纳米棒一般采用水热法,如用还原剂还原高锰酸钾等;中国专利申请CN201010218620.4中公开了一种制备MnOOH纳米棒的方法,它是用高锰酸钾和N,N-二甲基甲酰胺进行溶剂热反应得到MnOOH纳米棒。水热法γ-MnOOH纳米棒制备需要用到还原剂,这使得生成物中产生杂质相,有些水热过程往往需添加表面活性剂以获得一维结构,这同样会引入杂质,杂质的清除使制备过程复杂化。另外,水热过程需要在高于120℃以上的温度加热,需要增加额外的加热装置。
发明内容
本发明提供了一种低温制备γ-MnOOH纳米棒的方法,该方法中不需任何表面活性剂,原料可以回收再利用,具有工艺简单、成本低、周期短、低能耗、无污染等优点,适合工业化生产。
一种制备γ-MnOOH纳米棒的方法,包括以下步骤:
1)按LiOH·H2O与Mn(CH3COO)2·4H2O摩尔比为0.2~1取LiOH·H2O和Mn(CH3COO)2·4H2O,用去离子水溶解得到混合溶液;
2)将步骤1)中混合溶液搅拌10小时~36小时后得到含棕色沉淀的溶液,经抽滤和干燥,得到γ-MnOOH纳米棒。
为了达到更好的发明效果,优选:
所述的混合溶液的浓度以醋酸锰的重量百分比计为1%~10%。
所述的干燥的温度为40℃~70℃。
所述的搅拌可采用常规的搅拌装置,从便于操作的角度考虑优选磁力搅拌。
本发明具有以下优点:
1、本发明在低温如环境温度(室温等)下制备γ-MnOOH纳米棒,无需加热,具有工艺简单、成本低、周期短、低能耗、无污染等优点,适合工业化生产。
2、本发明制备的γ-MnOOH纳米棒尺寸分布比较均匀,无任何杂质。
附图说明
图1为实施例1所得γ-MnOOH纳米棒的X射线衍射图谱。
图2为实施例1所得γ-MnOOH纳米棒的扫描电镜照片。
具体实施方式
实施例1
将LiOH·H2O与Mn(CH3COO)2·4H2O按LiOH·H2O与Mn(CH3COO)2·4H2O摩尔比为4∶5置于烧杯中,并加入适量的去离子水溶解得到混合溶液,混合溶液的浓度以醋酸锰的重量百分比计为1%。将上述混合溶液磁力搅拌10小时后得到含棕色沉淀的溶液,将上述含棕色沉淀的溶液进行充分抽滤,将抽滤的固体产物经烘箱于40℃干燥后得到最终产物。
将所得产物经XRD表征,见图1,与γ-MnOOH的标准衍射谱(PDF#88-0649)相比较表明:产物为单相γ-MnOOH。对产物的扫描电镜观察表明最终产物为长度在1微米~2微米,直径在10纳米~50纳米的棒状物,且尺寸分布均匀,见图2。
实施例2
将LiOH·H2O与Mn(CH3COO)2·4H2O按LiOH·H2O与Mn(CH3COO)2·4H2O摩尔比1∶5置于烧杯中,并加入适量的去离子水溶解得到混合溶液,混合溶液的浓度以醋酸锰的重量百分比计为5%。将上述混合溶液磁力搅拌24小时后得到含棕色沉淀的溶液,将上述含沉淀的溶液进行充分抽滤,将抽滤产物经烘箱于60℃干燥后得到最终产物。
将最终产物经XRD表征表明,产物为单相γ-MnOOH。对最终产物的扫描电镜观察表明,最终产物为长度在2微米~3微米,直径在20纳米~60内米的棒状物,且尺寸分布均匀。
实施例3
将LiOH·H2O与Mn(CH3COO)2·4H2O按LiOH·H2O与Mn(CH3COO)2·4H2O摩尔比1∶1置于烧杯中,并加入适量的去离子水溶解得到混合溶液,混合溶液的浓度以醋酸锰的重量百分比计为10%。将上述混合溶液磁力搅拌36小时后得到含棕色沉淀的溶液,将上述含沉淀的溶液进行充分抽滤,将抽滤产物经烘箱于70℃干燥后得到最终产物。
将最终产物经XRD表征表明,产物为单相γ-MnOOH。对最终产物的扫描电镜观察表明,最终产物为长度在2微米~3微米,直径在20纳米~60内米的棒状物,且尺寸分布均匀。
Claims (3)
1.一种制备γ-MnOOH纳米棒的方法,包括以下步骤:
1)按LiOH·H2O与Mn(CH3COO)2·4H2O摩尔比为0.2~1取LiOH·H2O和Mn(CH3COO)2·4H2O,用去离子水溶解得到混合溶液;
2)将步骤1)中混合溶液搅拌10小时~36小时后得到含棕色沉淀的溶液,经抽滤和干燥,得到γ-MnOOH纳米棒。
2.根据权利要求1所述的制备γ-MnOOH纳米棒的方法,其特征在于,所述的混合溶液的浓度以醋酸锰的重量百分比计为1%~10%。
3.根据权利要求1所述的制备γ-MnOOH纳米棒的方法,其特征在于,所述的干燥的温度为40℃~70℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110131857 CN102219263B (zh) | 2011-05-20 | 2011-05-20 | 一种制备γ-MnOOH纳米棒的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110131857 CN102219263B (zh) | 2011-05-20 | 2011-05-20 | 一种制备γ-MnOOH纳米棒的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102219263A true CN102219263A (zh) | 2011-10-19 |
CN102219263B CN102219263B (zh) | 2012-12-12 |
Family
ID=44776017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110131857 Expired - Fee Related CN102219263B (zh) | 2011-05-20 | 2011-05-20 | 一种制备γ-MnOOH纳米棒的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102219263B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103232070A (zh) * | 2013-05-07 | 2013-08-07 | 许昌学院 | 一种制备棒状碱式氧化锰纳米材料的方法 |
CN103367737A (zh) * | 2012-04-09 | 2013-10-23 | 江苏国泰锂宝新材料有限公司 | 高密度锂电池正极材料尖晶石型锰酸锂的制备方法 |
CN103831096A (zh) * | 2014-03-13 | 2014-06-04 | 重庆大学 | 一种MnOOH纳米棒脱硝催化剂及其制备方法 |
CN104386756A (zh) * | 2014-10-20 | 2015-03-04 | 中国科学院海洋研究所 | 一种模拟酶材料及制备和应用 |
CN114853073A (zh) * | 2022-05-30 | 2022-08-05 | 荆门市格林美新材料有限公司 | 一种线性MnOOH的制备方法及负极材料和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102060333A (zh) * | 2011-02-18 | 2011-05-18 | 中山火炬职业技术学院 | 一种制备锰氧化物纳米材料的方法 |
-
2011
- 2011-05-20 CN CN 201110131857 patent/CN102219263B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102060333A (zh) * | 2011-02-18 | 2011-05-18 | 中山火炬职业技术学院 | 一种制备锰氧化物纳米材料的方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367737A (zh) * | 2012-04-09 | 2013-10-23 | 江苏国泰锂宝新材料有限公司 | 高密度锂电池正极材料尖晶石型锰酸锂的制备方法 |
CN103232070A (zh) * | 2013-05-07 | 2013-08-07 | 许昌学院 | 一种制备棒状碱式氧化锰纳米材料的方法 |
CN103831096A (zh) * | 2014-03-13 | 2014-06-04 | 重庆大学 | 一种MnOOH纳米棒脱硝催化剂及其制备方法 |
CN103831096B (zh) * | 2014-03-13 | 2015-12-30 | 重庆大学 | 一种MnOOH纳米棒脱硝催化剂及其制备方法 |
CN104386756A (zh) * | 2014-10-20 | 2015-03-04 | 中国科学院海洋研究所 | 一种模拟酶材料及制备和应用 |
CN104386756B (zh) * | 2014-10-20 | 2015-10-21 | 中国科学院海洋研究所 | 一种模拟酶材料及制备和应用 |
CN114853073A (zh) * | 2022-05-30 | 2022-08-05 | 荆门市格林美新材料有限公司 | 一种线性MnOOH的制备方法及负极材料和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN102219263B (zh) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rahnama et al. | Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures | |
Song et al. | Two-step hydrothermally synthesized carbon nanodots/WO 3 photocatalysts with enhanced photocatalytic performance | |
Yu et al. | Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single‐Crystal Nanosheets and ZnO Flake‐like Dendrites from a Lamellar Molecular Precursor ZnS·(NH2CH2CH2NH2) 0.5 | |
Zhang et al. | Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate | |
Mohamed et al. | CuO nanobelts synthesized by a template-free hydrothermal approach with optical and magnetic characteristics | |
Xu et al. | Synthesis and characterization of single-crystalline alkali titanate nanowires | |
Sharifi et al. | Investigation of photocatalytic behavior of modified ZnS: Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation | |
Shi et al. | ZnO flower: self-assembly growth from nanosheets with exposed {11¯ 00} facet, white emission, and enhanced photocatalysis | |
Saghatforoush et al. | Ni (OH) 2 and NiO nanostructures: synthesis, characterization and electrochemical performance | |
Li et al. | Surface doping for photocatalytic purposes: relations betweenparticle size, surface modifications, and photoactivity ofSnO2: Zn2+ nanocrystals | |
CN101723436B (zh) | 自组装氧化锌空心球及其制备方法 | |
Zhao et al. | Splitting growth of novel CuO straw sheaves and their improved photocatalytic activity due to exposed active {110} facets and crystallinity | |
Li et al. | Growth and characterization of single-crystal Y2O3: Eu nanobelts prepared with a simple technique | |
CN102826593A (zh) | 一种氧化铟纳米材料的制备方法 | |
CN102259929B (zh) | 一种制备具有多孔纳米或亚微米棒状氧化锰的方法 | |
Goodall et al. | Structure–property–composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants | |
CN114225895B (zh) | 一种La-Fe-Al复合金属氧化物、制备方法及用途 | |
CN102583315A (zh) | 四氧化三铁/碳纳米管复合材料的制备方法 | |
Kaur et al. | Size dependent dielectric properties of Co and Fe doped SnO 2 nanoparticles and their nanorods by Ce co-doping | |
CN101318702A (zh) | 一种三氧化钨纳米片及其制备方法 | |
Salavati-Niasari et al. | Controlled synthesis of spherical α-Ni (OH) 2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO | |
CN102219263B (zh) | 一种制备γ-MnOOH纳米棒的方法 | |
Zhang et al. | Uniform hollow TiO2: Sm3+ spheres: Solvothermal synthesis and luminescence properties | |
Zhang et al. | Enhanced photocatalytic activity in ferroelectric BiFeO3 nanoparticles treated by a corona poling method | |
Yang et al. | Is there lattice contraction in multicomponent metal oxides? Case study for GdVO4: Eu3+ nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121212 Termination date: 20150520 |
|
EXPY | Termination of patent right or utility model |