CN102076989A - 缓冲器及其制造方法 - Google Patents

缓冲器及其制造方法 Download PDF

Info

Publication number
CN102076989A
CN102076989A CN2009801243116A CN200980124311A CN102076989A CN 102076989 A CN102076989 A CN 102076989A CN 2009801243116 A CN2009801243116 A CN 2009801243116A CN 200980124311 A CN200980124311 A CN 200980124311A CN 102076989 A CN102076989 A CN 102076989A
Authority
CN
China
Prior art keywords
buffer
corrugated part
attenuator
stroke direction
piston rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801243116A
Other languages
English (en)
Inventor
信末宪司
山田龙男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOMIKUNI CORP
Fukoku KK
Original Assignee
TOMIKUNI CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOMIKUNI CORP filed Critical TOMIKUNI CORP
Publication of CN102076989A publication Critical patent/CN102076989A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/22Resilient suspensions characterised by arrangement, location or kind of springs having rubber springs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/04Buffer means for limiting movement of arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/062Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/14Plastic spring, e.g. rubber
    • B60G2202/143Plastic spring, e.g. rubber subjected to compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/45Stops limiting travel
    • B60G2204/4502Stops limiting travel using resilient buffer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8101Shaping by casting
    • B60G2206/81012Shaping by casting by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)
  • Vibration Dampers (AREA)
  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

本发明提供一种缓冲器及其制造方法,其不管使用环境的气温或湿度,都能经长期恒定维持冲击吸收特性或耐久性能,并能够恒定维持作为成品的尺寸精度的同时,材料收益率或制造效率优异、低成本、重量轻,且可以循环利用并为生态学缓冲器。一种缓冲器(1),其设置于吸震器杆的附近,且用于在弹性地限制吸震器收缩时的冲程的同时,吸收此时产生的冲击,其中,该缓冲器具备沿吸震器的冲程方向(S)延伸的空心圆筒状的波纹部(11),波纹部使热塑性树脂薄壁化而成型的同时,沿冲程方向(S)交替反复设置向外突出的第1部位(12)和向内凹陷的第2部位(13)而构成。

Description

缓冲器及其制造方法
技术领域
本发明涉及一种缓冲器(bump stopper)及其制造方法,所述缓冲器例如设置于吸收来自路面的冲击的吸震器的活塞杆或活塞杆的附近,用于弹性地限制该吸震器收缩时的冲程(收缩量),同时吸收其触底(接触冲撞)时产生的冲击。
另外,缓冲器例如有时也称作橡胶缓冲器、颠簸缓冲器等,但用作这些的总称。
背景技术
以往,为了谋求行驶时的乘坐感或驾驶(行驶)稳定性,例如在使用于汽车等的车辆的悬架上使用各种吸震器。例如如专利文献1所示,吸震器具备圆筒状的主体部和进退自如地支承于主体部的活塞杆,行驶时荷载(例如包含来自路面的冲击或震动等的力)作用于悬架时,活塞杆按照该荷载的大小相对主体部相对伸缩(冲程),从而吸收其作用的荷载,并衰减(缓冲)该悬架的活动。
此时,根据作用于悬架的荷载的大小,有时活塞杆的冲程成为容许界限(触底(接触冲撞)这样的吸震器的缩小极限),此时反复产生冲击。这样有可能难以恒定维持行驶时的乘坐感或驾驶(行驶)稳定性。因此,在吸震器应用用于吸收触底(接触冲撞)时产生的冲击的各种缓冲器。
图13中示出以往缓冲器的一例,该缓冲器2以同轴状设置于吸震器的活塞杆6上,所述吸震器具备圆筒状的主体部(缸主体)4、及沿主体部4内向箭头S方向进退自如(突没自如)地支承的活塞杆6。所述缓冲器2例如由发泡尿烷树脂成型(反应注射成型:RIM),在其中央部分,可插通吸震器杆6的插通孔2h贯穿发泡尿烷树脂而形成。
并且,缓冲器2以插通孔2h外插于活塞杆6的状态,其一方侧压入杯体8,该杯体8固定于将活塞杆6防震支承于车体侧的安装配件10上。由此,缓冲器2定位配置于安装配件10与吸震器之间。另外,发泡尿烷树脂为例如组合以聚醚多元醇为主的A液、以聚异氰酸酯为主的B液、及发泡剂而成型的热固性树脂。
作为其他例子,图14所示的缓冲器2具备空心圆筒状的波纹部204而构成,在使活塞杆6插通于该波纹部204的状态下,相对于支承部件G(例如,将活塞杆6防震支承于车体侧的部件)固定其一端侧202a(图14中的上端侧),从而装入于吸震器。另外,在波纹部204的内周面,沿吸震器的冲程方向S(活塞杆6的冲程方向S)形成有呈截面圆弧状的环状凹部204r,由此,该波纹部204作为沿冲程方向S弹性地伸缩自如的弹性体而构成。
这种缓冲器2,在荷载(例如,包含来自路面的冲击或震动等的力)作用于悬架,且活塞杆6的冲程成为容许界限(触底(接触冲撞)这样的吸震器的缩小极限)时产生冲击时,可通过发泡尿烷树脂本身的弹性变形或混合于发泡尿烷树脂的气泡被挤破,压缩弹性变形而吸收上述冲击。由此,恒定维持行驶时的乘坐感或驾驶(行驶)稳定性。
专利文献1:日本专利公开2006-281811号公报
专利文献2:日本专利公开2000-301923号公报
上述以往缓冲器2由于其整体使发泡尿烷树脂厚壁化而成型,因此不仅使缓冲器2整体的重量增加与该厚壁化对应的量,而且制造时需要大量的尿烷树脂材料,所以会导致制造成本上升。
并且,上述以往缓冲器2通过将上述A液和B液的2液混合注射至模具内起聚合反应(化学反应)的同时,使其发泡而成型(反应注射成型:RIM)。因此,缩短至成品所需的成型周期是有一定限制的。换言之,成型周期不得不变长。其结果,提高缓冲器2的制造效率是有一定界限的。
另外,由于上述反应注射成型(RIM)容易受模具内的成型环境(例如温度、湿度)的影响,所以难以恒定维持作为成品的缓冲器2的尺寸精度。
并且,上述发泡尿烷树脂具有低温环境下的耐久性差之类的材料特性。因此,如将使用发泡尿烷树脂制的缓冲器2的车辆例如在寒冷地区使用时,有时很难经长期恒定维持该缓冲器2的冲击吸收特性,并且,如在极寒地区使用所述车辆时,缓冲器2还有时破损。
另外,上述发泡尿烷树脂具有容易水解、耐水性差之类的材料特性。因此,如将使用发泡尿烷树脂制的缓冲器2的车辆例如在降雨量多的湿润地区使用时,或蒸汽清洗所述车辆的底部时,会导致很难经长期恒定维持该缓冲器2的耐久性能。
另外,上述发泡尿烷树脂由于无法再利用(循环利用)其材料,所以例如使用完的缓冲器不得不直接废弃,不仅材料收益率差,而且并没有考虑到地球环境(生态学:商品化物品的再资源化)。
另外,在使缓冲器薄壁化而成型时,虽然在轻量化等方面优选,但由于插通于此的吸震器的活塞杆的外径和缓冲器的内径大不相同,所以会导致活塞杆的外周面和缓冲器的内周面的远离距离变大。
因此,在缓冲器压缩弹性变形时,有时缓冲器的整体或一部分向脱离吸震器的冲程方向(活塞杆的轴心方向)倾斜,或压缩变形,并且,产生缓冲器的一部分横向(径向)偏移之类的“颤动”。这样,有可能无法维持所希望的冲程方向的冲击吸收特性,期望其改善。
并且,近年来为了提高车辆的乘坐感,要求如下缓冲器:即较大地设定吸震器的冲程,有效地使用其变大的冲程而能够缓慢吸收冲击。
为了响应该要求,如下进行:通过较长地设定缓冲器的总长、加大压缩变形时的冲程量,由此能够缓慢吸收冲击。
但是,若加长缓冲器的总长,则有可能相对于吸震器的冲程方向促进缓冲器的“颤动”,期望其改善。
顺便提及,以往的缓冲器2(波纹部204)通常用发泡尿烷树脂成型(反应注射成型:RIM),但发泡尿烷树脂具有耐久性或耐水性差这样的材料特性。并且,需要防止来自形成于吸震器的缸主体(主体部)4端面的活塞杆6的插通孔(未图示)的灰尘等(例如,水或尘埃等)异物的侵入。因此,如图14所示,以往通常装载灰尘盖206,以使同时覆盖缓冲器2的整体和吸震器的活塞杆6的插通孔。
但是,若装载灰尘盖206,则除了缓冲器2的装载作业之外,还需要该灰尘盖206的装载作业,并且,由此零件件数也增加,所以在组装作业的简略化或低成本化方面有一定的界限。并且,从同时覆盖缓冲器2的整体和吸震器的活塞杆6的插通孔的必要性考虑,上述灰尘盖206还有容易导致大型化的问题点。
因此,在专利文献2中提出了使覆盖吸震器的活塞杆的插通孔的灰尘盖一体化的橡胶制的缓冲器。若以图15所示的缓冲器2为例子进行说明,则在该缓冲器2的波纹部204上,环状灰尘盖206从其另一端侧202b(图15中下端侧)的外缘整周垂下而一体成型。在这种缓冲器2中,由于缓冲器2本身为橡胶制,所以与发泡尿烷树脂相比耐水性优异,不需要为了防范雨水等而覆盖其整体的盖,并且,灰尘盖206被一体化于缓冲器2,所以在盖的小型化、零件件数的削减及组装作业性方面优异,但产生如以下的新问题。
首先,为了使灰尘盖206从缓冲器2(波纹部204)的另一端侧202b的外缘整周一体垂下而成型,除了波纹部204的成型工序以外,有时需要灰尘盖206的成型工序。此时,灰尘盖206的壁厚与波纹部204的壁厚相比,更加薄壁化,为了成型所述形状的缓冲器2,在波纹部204的成型工序和灰尘盖206的成型工序中,需要互不相同的成型处理(例如,波纹部204和灰尘盖206相互的壁厚调整、各成型工序中成型时间的调整等)。这样,由于缓冲器2的成型工序复杂化,花费其所需的工夫和时间,所以在缓冲器2的制造效率的提高(例如,制造时间的缩短化)或制造成本的降低方面具有一定的界限。
发明内容
本发明是为了解决这种问题而完成的,其第1目的在于提供一种如下缓冲器及其制造方法:不管使用环境的气温或湿度,都能经长期恒定维持冲击吸收特性或耐久性能,并能够恒定维持作为成品的尺寸精度的同时,材料收益率或制造效率优异、低成本、重量轻,且能够循环利用并为生态学。
并且,本发明的第2目的在于,除了第1目的以外,还提供一种通过防止弹性变形时相对于吸震器的冲程方向的颤动,能够维持所希望的冲程方向的冲击吸收特性的缓冲器及其制造方法。
另外,本发明的第3目的在于,除了第1目的以外,还提供一种能够提高制造效率、耐水性优异、且无需另外设置灰尘盖就能够防止向缸主体内的灰尘等异物侵入的缓冲器。
为了实现所述第1目的,本发明的缓冲器,其设置于吸震器的活塞杆的附近,用于弹性地限制所述吸震器收缩时的冲程,同时吸收此时产生的冲击,其特征在于,具备沿所述吸震器的冲程方向延伸的空心圆筒状的波纹部,所述波纹部使热塑性树脂薄壁化而成型的同时,具备向中心方向的反方向突出的第1部位和向中心方向凹陷的第2部位,所述第1部位和所述第2部位沿冲程方向被交替反复设置。
在本发明中所述第1部位的顶部及所述第2部位的顶部,其外周面及内周面也可以沿冲程方向形成为圆弧状。
在本发明中,所述第2部位的外周面及内周面沿冲程方向形成为圆弧状,所述第1部位的外周面的冲程方向的曲率半径构成为小于所述第2部位的外周面的冲程方向的曲率半径。另外,所述第1部位的内周面也可以沿冲程方向形成为圆弧状。
在本发明中,所述第1部位的外周面及内周面沿冲程方向形成为圆弧状,所述第2部位的外周面的冲程方向的曲率半径构成为小于所述第1部位的外周面的冲程方向的曲率半径。另外,所述第2部位的内周面也可以沿冲程方向形成为圆弧状。
而且,为了实现所述第2目的,本发明的缓冲器具备空心圆筒状的波纹部,所述波纹部外插于吸震器的活塞杆而设置,用于在弹性地限制所述吸震器的收缩时的冲程的同时,吸收此时产生的冲击,所述波纹部使热塑性树脂薄壁化而成型的同时,向中心方向的反方向突出的第1部位和向中心方向凹陷的第2部位沿冲程方向被交替反复设置,其中,具备轴偏移管制部,所述轴偏移管制部管制所述波纹部相对于所述活塞杆的轴偏移。
在本发明中,管制所述波纹部相对于所述活塞杆的轴偏移的轴偏移管制部也可以设于位于所述吸震器侧的端部。此时,所述轴偏移管制部也可以与所述波纹部连续一体成型,并向中心方向缩径,以比所述第2部位更靠近所述活塞杆。
并且,所述轴偏移管制部也可以设于所述波纹部。此时,所述轴偏移管制部也可以与所述波纹部连续一体成型,并向中心方向缩径,以比所述第2部位更靠近所述活塞杆。
另外,为了实现所述第3目的,本发明的缓冲器,其设置于吸震器,用于弹性地限制所述吸震器收缩时的冲程的同时,吸收此时产生的冲击,其中,具备空心圆筒状的波纹部、设置于所述波纹部一端侧的环状第1端部、及设置于所述波纹部的另一端侧的环状第2端部,所述波纹部使热塑性树脂薄壁化而成,沿所述吸震器的所述冲程方向延伸,并且沿所述冲程方向弹性地伸缩自如,所述第1端部支承于设置在所述吸震器的活塞杆的前端侧的支承部件,所述第2端部支承于所述吸震器的缸主体。
在本发明中,也可以所述第1端部以通过所述波纹部的弹力压接于所述支承部件的状态,并且所述第2端部以通过所述波纹部的弹力压接于所述缸主体的状态,被装入所述支承部件与所述缸主体之间。
并且,也可以具备连通路,所述连通路在所述波纹部沿所述冲程方向伸缩时,能够在所述波纹部的内部与外部之间进行空气的流出及流入。此时,所述连通路设置于所述第1端部或所述第2端部中的至少一方。并且,所述连通路也可以具有管制水侵入所述波纹部的内部的结构。
并且,本发明的缓冲器的制造方法,具有下列工序:在由热塑性树脂构成的型坯的外周侧组设对内面施加了沿所述波纹部的外形轮廓的起伏形状的模具的工序,或者在对内面施加了沿所述波纹部的外形轮廓的起伏形状的模具的所述内面侧组设由热塑性树脂构成的型坯的工序中的任意一个工序;向所述型坯内喷射气体,使所述型坯膨胀而成型所述波纹部的工序。另外,在本发明中,型坯是指包含预制件。
发明效果
根据本发明可以提供如下缓冲器及其制造方法:不管使用环境的气温或湿度,都能经长期恒定维持冲击吸收特性或耐久性能,并能够恒定维持作为成品的尺寸精度的同时,材料收益率或制造效率优异、低成本、重量轻,且能够循环利用并为生态学。
并且,可以提供一种能够提高制造效率、耐水性优异、且无需另外设置灰尘盖就能够防止灰尘等异物侵入缸主体内的缓冲器及其制造方法。
另外,可以提供一种通过防止弹性变形时对于吸震器的冲程方向的颤动,能够维持所希望的冲程方向的冲击吸收特性的缓冲器及其制造方法。
附图说明
图1A是表示将根据本发明的实施方式1的缓冲器使用于吸震器的状态的简要截面图。
图1B是表示将根据本发明的实施方式1的缓冲器使用于吸震器的状态的简要侧视图。
图1C是表示根据本发明的实施方式1的缓冲器的第1变形例的简要截面图。
图2A是表示根据本发明的实施方式1的缓冲器的制造工序的简要截面图,并且是表示在模具内面侧以筒状连续形成型坯的工序的简要截面图。
图2B是表示根据本发明的实施方式1的缓冲器的制造工序的简要截面图,并且是表示向型坯内喷射气体而粘附于模具内面的工序的简要截面图。
图2C是表示根据本发明的实施方式1的缓冲器的制造工序的简要截面图,并且是表示从模具取出缓冲器的工序的简要截面图。
图2D是表示根据本发明的实施方式1的缓冲器的制造工序的简要截面图,并且是表示从缓冲器的上端及下端切割剩余部分的工序的简要截面图。
图3A是对根据本发明的实施方式1的缓冲器的效果进行评价的试验结果的说明图,并且表示没有使缓冲器1压缩的初始状态。
图3B是对根据本发明的实施方式1的缓冲器的效果进行评价的试验结果的说明图,并且表示渐渐压缩的第1状态。
图3C是对根据本发明的实施方式1的缓冲器的效果进行评价的试验结果的说明图,并且表示进一步压缩的第2状态。
图3D是对根据本发明的实施方式1的缓冲器的效果进行评价的试验结果的说明图,并且表示最压缩的第3状态。
图3E是对根据本发明的实施方式1的缓冲器的效果进行评价的试验结果的说明图,并且表示以往品(现行品)的压缩-荷载特性图。
图4A是表示根据本发明的实施方式2的缓冲器,并且表示将缓冲器使用于吸震器的状态的简要截面图。
图4B是表示根据本发明的实施方式2的缓冲器,并且表示将缓冲器使用于吸震器的状态的简要侧视图。
图4C是表示根据本发明的实施方式2的缓冲器,并且表示缓冲器的第1变形例的简要截面图。
图5A是表示根据本发明的实施方式2的缓冲器的制造工序的简要截面图,并且是表示在模具内面侧以筒状连续形成型坯的工序的简要截面图。
图5B是表示根据本发明的实施方式2的缓冲器的制造工序的简要截面图,并且是向型坯内喷射气体而粘附于模具内面的工序的简要截面图。
图5C是表示根据本发明的实施方式2的缓冲器的制造工序的简要截面图,并且是表示从模具取出缓冲器的工序的简要截面图。
图5D是表示根据本发明的实施方式2的缓冲器的制造工序的简要截面图,并且是表示从缓冲器的上端及下端切割剩余部分的工序的简要截面图。
图6A是表示根据本发明的实施方式3的缓冲器,并且表示将缓冲器使用于吸震器的状态的简要截面图。
图6B是表示根据本发明的实施方式3的缓冲器,并且表示将缓冲器使用于吸震器的状态的简要侧视图。
图6C是表示根据本发明的实施方式3的缓冲器,并且表示缓冲器的第2变形例的简要截面图。
图7A是对根据实施方式2至实施方式4及实施方式5的缓冲器的效果进行评价的试验结果的说明图,表示没有使缓冲器压缩的初始状态。
图7B是对根据实施方式2至实施方式4及实施方式5的缓冲器的效果进行评价的试验结果的说明图,表示渐渐压缩的第1状态。
图7C是对根据实施方式2至实施方式4及实施方式5的缓冲器的效果进行评价的试验结果的说明图,表示进一步压缩的第2状态。
图7D是对根据实施方式2至实施方式4及实施方式5的缓冲器的效果进行评价的试验结果的说明图,表示最压缩的第3状态。
图7E是对根据实施方式2至实施方式4及实施方式5的缓冲器的效果进行评价的试验结果的说明图,表示以往品(现行品)的压缩-荷载特性图。
图8A是表示根据本发明的实施方式6的缓冲器装入吸震器的状态的截面图。
图8B是简要表示根据本发明的实施方式6的缓冲器装入到吸震器的工序的截面图。
图8C是表示根据本发明的实施方式6的缓冲器被装入吸震器之前的状态中的吸震器的结构的截面图。
图8D是表示将根据本发明的实施方式6的缓冲器装入吸震器之前的状态中的缓冲器的结构的截面图。
图9A是表示根据本发明的实施方式6的缓冲器的制造工序的图,并且是表示在模具内提升型坯的工序的简要截面图。
图9B是表示根据本发明的实施方式6的缓冲器的制造工序的图,并且是表示向型坯内喷射空气而粘附于模具内面的工序的简要截面图。
图9C是表示根据本发明的实施方式6的缓冲器的制造工序的图,并且是表示从模具取出成型品的工序的简要截面图。
图9D是表示根据本发明的实施方式6的缓冲器的制造工序的图,并且是表示切割剩余部分而完成缓冲器的工序的简要截面图。
图10A是表示对根据本发明的实施方式6的缓冲器的效果进行评价的试验结果的图,并且是简要表示没有压缩弹性变形的初始状态中的缓冲器的图。
图10B是表示对根据本发明的实施方式6的缓冲器的效果进行评价的试验结果的图,并且是简要表示从初始状态渐渐压缩弹性变形的第1状态中的缓冲器的图。
图10C是表示对根据本发明的实施方式6的缓冲器的效果进行评价的试验结果的图,并且是简要表示从第1状态进一步压缩弹性变形的第2状态中的缓冲器的图。
图10D是表示对根据本发明的实施方式6的缓冲器的效果进行评价的试验结果的图,并且是简要表示从第2状态最压缩弹性变形的第3状态中的缓冲器的图。
图10E是表示对根据本发明的实施方式6的缓冲器的效果进行评价的试验结果的图,并且是简要表示以往品(现行品)的缓冲器中的压缩-荷载特性的图。
图11A是表示本发明的实施方式6的变形例所涉及的缓冲器被装入吸震器的状态的截面图。
图11B是表示本发明的实施方式6的其他变形例所涉及的缓冲器被装入吸震器的状态的截面图。
图12A是部分扩大实施了去除空气的缓冲器的一端侧的结构而表示的立体图。
图12B是部分扩大实施了去除空气的缓冲器的另一端侧的结构而表示的立体图。
图13是表示将以往的缓冲器使用于吸震器的状态的截面图。
图14是表示以往其他缓冲器的结构的截面图。
图15是表示以往其他缓冲器的结构的截面图。
附图标记说明:1-缓冲器,4-主体部(缸主体,对方部件),6-活塞杆,11-波纹部,12-向外突出的部位(第1部位),13-向内凹陷的部位(第2部位),100、101、1001-缓冲器,101a-上端部,101b-位于吸震器的圆筒状的主体部侧的端部,108-杯体,110-安装配件,111-波纹部,112-向外突出的部位(第1部位),113-向内凹陷的部位(第2部位),112a-倾斜部,115、115a、115b、115c-轴偏移管制部,208-缓冲器,214-支承部件(对方部件),216-波纹部,H-波纹部的长度,R-活塞杆的外径,RE-最突出部分的外径,RI-向内凹陷部位的内径,RM-形成为比其他第2部位的内径更靠近活塞杆的部位的内径,S-冲程方向,P1-缓冲器的第1端部,P2-缓冲器的第2端部。
具体实施方式
以下,参照附图对本发明的缓冲器进行说明。
实施方式1
如图1A及1B所示,由于根据本发明的实施方式1的缓冲器1与以往的缓冲器2(参照图13)进行替换,以同轴状设置于吸震器的活塞杆6而使用,所以对吸震器的结构通过使用与图13所示的结构相同的符号省略其说明。另外,缓冲器1不一定必须以同轴状设置于吸震器的活塞杆6,安装形态为任意。
缓冲器1为沿吸震器的冲程方向S延伸的空心圆筒状,具备作为冲击吸收部发挥功能的波纹部11。
波纹部11使热塑性树脂薄壁化而成型的同时,沿冲程方向S交替反复设置向中心方向的反方向(放射方向)突出的部位12(以下称为“第1部位12”。)、向中心方向凹陷的部位13(以下称为“第2部位13”)而构成。
第2部位13其外周面及内周面整体沿冲程方向成型为圆弧状,并且,在邻接的第2部位13、13之间设置的第1部位12其外周面及内周面也沿冲程方向成型为圆弧状。
在此作为一例,将第1部位12的外周面的冲程方向的曲率半径rs设定为变得小于第2部位13的外周面的冲程方向的曲率半径rc,据此,大的曲率半径且圆弧形状的凹陷的第2部位13、和小的曲率半径且圆弧形状的突出的第1部位12呈沿冲程方向S交替一体连续的形状。
另外,图面中表示了遍及波纹部11的上端1a至下端1b设定5个第1部位12的同时,设定4个第2部位13的例子,但不限于此,根据使用目的或用途可以对其增减变更。
并且,关于第1部位12的曲率半径rs和第2部位13的曲率半径rc的具体数值,根据装载缓冲器1的吸震器的形状或大小等,在第1部位12的曲率半径rs变得小于第2部位13的曲率半径rc的范围内,可以设定任意的曲率半径rs、rc,所以在此对数值不进行特别限定。
根据这种波纹部11,通过第1部位12和第2部位13的组合,其整体沿冲程方向S作为伸缩自如的弹性体而构成。此时,冲程方向S的荷载没有作用于波纹部11的无负荷状态下,沿冲程方向S以等间隔弹性地维持第1部位12相互的间隔(间距)P。
另外,伸缩自如是指,波纹部11按照负荷从无负荷状态的自然长度向冲程方向弹性变形而收缩,并且负荷解除而通过弹性恢复力,波纹部11伸长到自然长度。
并且,波纹部11形成为如下:遍及其上端1a至下端1b为一定的薄壁的壁厚T,且第1部位12相互的外径RE和第2部位13相互的内径RI成为相互一定。换言之,形成为所谓筒型,即形成为:波纹部11最突出的部分相互的外径尺寸RE从上端1a到下端1b相同,并且,最凹陷的部分相互的内径尺寸RI从上端1a到下端1b相同。
根据这种波纹部11,在长度H经由冲程方向S的冲击缩小时,通过相邻的第1部位12和第2部位13以重叠的方式弹性变形来吸收冲击。此时,波纹部11的薄壁的壁厚T为以第1部位12和第2部位13重叠的方式可弹性变形的程度的厚度尺寸即可。另外,关于具体的厚度尺寸,按照装载缓冲器1的吸震器的使用环境或使用目的,设定任意的厚度尺寸,所以在此不特别限定。
另外,在本实施方式中说明了波纹部11遍及其上端1a至下端1b以一定的薄壁的壁厚T形成的情况,但壁厚T若形成为薄壁,即使不是一定也可以。例如,也可以部分较厚地形成,或较薄地形成,只要能够发挥作为缓冲器的功能即可。
另外,关于波纹部11的长度H,按照缓冲器1所使用的吸震器的大小或冲程量任意地设定,所以在此不作特别限定。并且,关于波纹部11的上端1a及下端1b的形状,按照装载缓冲器1的吸震器的装载部分的形状或大小等任意设定,所以在此不作特别限定。
在此,对本实施方式的缓冲器1的制造方法进行说明。
本实施方式的缓冲器1的制造方法为例如用压吹成型法成型的方法。以下说明用压吹成型法成型缓冲器1时的一例。
首先,如图2A所示,从挤出机21挤出至模20的、熔融的热塑性树脂材料朝向模20的上方经以环状开口的挤出口20a,其一部分供给到提升部件40a而保持,之后,调整提升部件40a的提升速度和热塑性树脂材料的挤出量的同时,提升成型坯40成为所希望的壁厚。此时,型坯40成为连续筒状的型坯40,且在分割的模具31与模具32之间被提升(形成型坯的工序)。另外,对模具31和模具32的内面施加沿波纹部11的外形轮廓的起伏形状。
接着,如图2B所示,合模模具31和模具32(参照图中向内的箭头)(组设模具的工序)。
接着,如同图所示,从提升部件40a的吹入口30a向一端侧通过模20堵塞的型坯40的内部从吹塑喷嘴22一口气喷射压缩了的气体(例如空气)(参照图中向下的箭头)。据此,型坯40向径向膨胀而粘附于模具31、32的内面。此时,由于对模具31、32的内面施加沿波纹部11的外形轮廓的起伏形状,所以型坯40沿该起伏形状粘附成薄壁状。
此后,通过冷却的模具31、32,热塑性树脂材料以波纹部11的形状冷却而固化(成型波纹部的工序)。
并且,如图2C所示,分割模具31、32(参照图中向外的箭头),取出固化了的成型品。此后,如图2D所示,通过从应该成为波纹部11的成型品的上端1a及下端1b切割剩余部分1c、1d,可以完成作为最终产品的缓冲器1(波纹部11)。
另外,在本实施方式中例示了形成型坯40之后合模(组设模具)模具31和模具32的方法,但也可以预先合模(组设模具)模具31和模具32,在该合模的模具31、模具32内设定已形成的型坯40而制造缓冲器1。
作为缓冲器1(波纹部11)制造用的热塑性树脂,可以应用聚酯系热塑性弹性体。另外,作为除此以外的热塑性树脂,例如可以应用烯烃系弹性体、尿烷系热塑性弹性体、聚酰胺系弹性体的单体或与其他热塑性树脂的合体等。
另外,在本实施方式中说明了用压吹成型法制造缓冲器1的情况,但不限于此,可以用挤出吹塑成型法、注射吹塑成型法制造。若为可以制造相同的缓冲器1的方法,就可以应用其他制造方法(例如,注射成型法),制造方法是任意的。
以上,根据本实施方式的缓冲器1由于其整体使热塑性树脂薄壁化而成型,所以与使发泡尿烷树脂厚壁化而成型的以往的缓冲器2相比,不仅可谋求整体重量的减轻,而且制造时不需要大量的树脂材料,所以可以抑制制造成本。
并且,根据上述本实施方式的缓冲器1由于不需要如以往使2液聚合(化学)反应,仅以吹塑成型由热塑性树脂构成的型坯即可成型,所以可以极大地缩短成型周期,并且可以提高缓冲器1的制造效率。
并且,根据本实施方式的缓冲器1,由于不是如以往品的发泡体,而是不存在由发泡引起的气泡的、所谓实心的波纹形状,所以可以恒定维持作为成品的缓冲器1的尺寸精度。
并且,上述热塑性树脂具有可以在高温至低温的宽范围的温度环境下恒定维持其耐久性的材料特性。因此,即使将应用了热塑性树脂制的缓冲器1的车辆例如在寒冷地区使用,也可以经长期恒定维持该缓冲器1的冲击吸收特性,并且,即使在极低温下使用所述车辆,也可以防止缓冲器1的破损。
并且,上述热塑性树脂具有不会水解且耐水性优异的材料特性。因此,即使将使用了热塑性树脂制的缓冲器1的车辆例如在降雨量多的湿润地区使用时,或蒸汽清洗了所述车辆的车底时,也可以经长期恒定维持该缓冲器1的耐久性能。
另外,上述热塑性树脂可以直接作为成型材料再利用(循环利用),例如可以回收制造时被切割的剩余部分1c、1d或使用完的缓冲器1,从而将此作为用于制造新的缓冲器1的成型材料而循环利用。据此,可以提高材料收益率的同时,提供也考虑地球环境的、生态学的缓冲器1。
在此,对如上述那样的缓冲器1的效果进行评价了的试验结果进行说明。
在该评价试验中,关于从没有压缩本发明的缓冲器1的初始状态(无负荷状态)(图3A),渐渐压缩的例如第1状态(图3B),及进一步压缩的例如第2状态(图3C),及最大压缩的例如第3状态(图3D),利用与以往品(现行品)的变形量-荷载特性(图3E)的对比评价各状态下的缓冲器1的压缩状态(变形状态:变形量)和压缩时的荷载。
由此可知,本发明的缓冲器1的压缩-荷载特性,在图3E中的a点(初始状态)、b点(第1状态)、c点(第2状态)、d点(第3状态)中,成为与以往品大致相同的特性。据此可以确认本发明的缓冲器1具有与以往品相同的性能(例如,冲击吸收特性)。
另外,本发明不限于上述本实施方式,作为如以下的各变形例也体现与上述本实施方式的缓冲器1取得同样的效果。
如图1C所示,作为第1变形例,例如在缓冲器100(波纹部11a)中,也可以将向中心方向的反方向突出的第1部位12a的外周面的冲程方向的曲率半径rs设为变得大于向中心方向凹陷的第2部位13a的外周面的冲程方向的曲率半径rc。
这是形成为使根据上述本实施方式的缓冲器1(波纹部11)的内周面侧和外周面侧反转的形状。
另外,对其他结构,由于与根据上述本实施方式的缓冲器1相同,所以省略其说明。
并且,上述本实施方式的波纹部11及根据第1变形例的波纹部11a形成为如下:最突出部分相互的外径尺寸RE从上端1a到下端1b相同,并且,最凹陷部分相互的内径尺寸RI从上端1a到下端1b成为相同,但外径尺寸RE及内径尺寸RI也可以从波纹部11(波纹部11a)的上端1a到下端1b不同。
作为第2变形例,例如也可以形成为外径尺寸RE和内径尺寸RI朝向下端1b渐渐变小,且波纹部11(波纹部11a)的整体形状成为锥形。或者也可以形成外径尺寸RE和内径尺寸RI朝向下端1b渐渐变大,且波纹部11(波纹部11a)的整体形状成为扇形(省略图示)。并且,例如,波纹部11(波纹部11a)的整体形状,也可以在其中间变细成小于上端1a及下端1b的所谓鼓形状,或者也可以在其中间鼓出成大于上端1a及下端1b的所谓大鼓形状。
并且,在上述本实施方式及第1、第2变形例中,设想了第1部位12和第2部位13在冲程方向以圆滑曲线一体连续的情况,但不限于此,第1部位12和第2部位13也可以在冲程方向仅将这些顶部成型为圆弧状,而使邻接的顶部之间成型为一体连续的直线状。
这样通过至少将顶部成型为圆弧状,可以在波纹部11(波纹部11a)收缩时,松弛向上述各顶部的应力集中。
并且,第1部位12相互的间隔(间距)P也可以是沿冲程方向S的非等间隔,并且,第1部位12的曲率半径rs和第2部位13的曲率半径rc无需各自为一定,也可以各自不同。
并且,在本实施方式及第1变形例中,例示了第1部位12(12a)及第2部位13(13a)的外周面及内周面从顶部到下摆部以一定曲率半径的圆弧构成的情况,但第1部位12(12a)或第2部位13(13a)的外周面及内周面无需从其顶部到下摆部以一定曲率半径的圆弧构成,例如,顶部的曲率半径和下摆部的曲率半径也可以不同。本发明的“圆弧状”并非仅指沿冲程方向S的一定曲率半径的圆弧,而是以也包含沿冲程方向S曲率半径部分地不同的圆弧,或者一部分包含直线部分但作为整体观察时形成为圆弧状的情况的意思而使用。
实施方式2
接着,参照附图对实施方式2所涉及的缓冲器101进行说明。
如图4A、图4B所示,本实施方式的缓冲器101与以往的缓冲器2(参照图13)进行替换,且在吸震器的活塞杆6设置为同轴状而使用,所以关于吸震器的结构,通过使用与图13所示的结构相同的符号,省略其说明。
如图4A及图4B所示,本实施方式的缓冲器101具备沿吸震器的冲程方向S延伸的空心圆筒状,且沿冲程方向S弹性伸缩自如的波纹部111。
若具体说明,波纹部111使热塑性树脂薄壁化而成型的同时,沿冲程方向S交替反复设置向中心方向的反方向(放射方向)突出的第1部位112和向中心方向凹陷的第2部位113而构成。
第2部位113其外周面及内周面沿冲程方向整体成型为圆弧状,并且,在邻接的第2部位113、113之间设置的第1部位112其外周面及内周面也沿冲程方向S成型为圆弧状。
另外,在缓冲器101的位于吸震器侧的端部上形成有轴偏移管制部115,所述轴偏移管制部向中心方向缩径,以使从波纹部111的第1部位112连续,且其内径RM比第2部位113的内径RI更靠近活塞杆6。
在本实施方式中,在冲程方向S的一端侧,即位于吸震器的圆筒状的主体部4(缸主体)侧的缓冲器101的端部101b配置一个轴偏移管制部115,并且该轴偏移管制部115形成为保持一定的内径RM的同时,以小于第2部位的内径RI的直径保持一定的外径RN的圆筒状。
此时,轴偏移管制部115(内径RM)与活塞杆6(外径R)之间的位置关系优选设定为相互之间存在微小的间隙的状态。另外,该间隙的大小设定为波纹部111向冲程方向S弹性伸缩时,轴偏移管制部115在远离冲程方向S的方向上不移动的程度即可。
这种波纹部111作为其一例,可以设定为如下:第1部位112的外周面的冲程方向S的曲率半径rs变得小于第2部位1113的外周面的冲程方向S的曲率半径rc,由此,成为大的曲率半径且圆弧形状的凹陷的第2部位113和小的曲率半径且圆弧形状的突出的第1部位112沿冲程方向S交替一体连续的形状。并且,轴偏移管制部115和邻接于轴偏移管制部115的第1部位112以圆滑地连续的倾斜部112a一体成型(连结)。
另外,关于第1部位112的曲率半径rs和第2部位113的曲率半径rc的具体数值,按照装载缓冲器1的吸震器的形状或大小等,在第1部位112的曲率半径rs变得小于第2部位113的曲率半径rc的范围内,设定任意的曲率半径rs、rc即可,所以在此对数值不作特别限定。
并且,缓冲器101从其上端部101a到位于吸震器的圆筒状的主体部4侧的端部101b,形成为一定薄壁的壁厚T的同时,形成为上述第1部位112的最突出部分彼此的外径尺寸RE相同,并且,第2部位113的最凹陷部分彼此的内径尺寸RI成为相同。
另外,所述内径RM在附图上设定为稍大于活塞杆6的外径R的直径,但也可以设定为与活塞杆6的外径R大致一致。
根据这种缓冲器101,通过第1部位112和第2部位113的组合,其整体作为沿冲程方向S伸缩自如的弹性体而构成。此时,在冲程方向S的荷载没有作用于缓冲器101的无负荷状态下,沿冲程方向S以等间隔弹性维持第1部位12相互的间隔(间距)P。
另外,伸缩自如是指,波纹部111从处于无负荷状态的缓冲器101的自然长度按照负荷向冲程方向弹性变形而收缩,并且负荷解除而通过波纹部111的弹性恢复力,缓冲器101伸长到自然长度。
在此,荷载作用于悬架,吸震器的活塞杆6相对于主体部4伸缩时,若活塞杆6的冲程达到容许界限(接触冲撞)时的冲击作用于缓冲器101,则波纹部111的长度H(遍及从上端部101a至位于吸震器的圆筒状的主体部104侧的端部101b的沿冲程方向S的缓冲器101的长度)根据冲程方向S的冲击缩小时,相邻的第1部位112和第2部位113通过以重叠的方式弹性变形来吸收冲击。
此时,由于轴偏移管制部115和活塞杆6处于存在上述微小间隙的状态(靠近状态),所以该轴偏移管制部115被活塞杆6引导的同时,不会沿活塞杆6脱离冲程方向S,即,不会轴偏移而移动。
此时,缓冲器101以跟随轴偏移管制部115的向冲程方向S的移动的方式,其整体不会从冲程方向S轴偏移,维持一定的姿势的同时进行重叠而弹性变形。
由此,缓冲器101(波纹部111)向与冲程方向S一致的方向弹性变形而收缩,并且可以有效稳定地吸收冲击。
另外,此时,波纹部111的薄壁的壁厚T为可弹性变形成第1部位112和第2部位113重叠程度的厚度尺寸即可。
并且,关于具体的厚度尺寸,由于按照装载缓冲器101的吸震器的使用环境或使用目的设定任意厚度尺寸,所以在此不特别限定。
本实施方式中说明了波纹部111遍及从其上端部101a至位于吸震器的圆筒状的主体部4侧的端部101b,以一定薄壁的壁厚T形成的情况,但壁厚T只要以薄壁形成,也可以不是一定。例如,也可以部分较厚地形成,或较薄地形成,只要可以发挥作为缓冲器1的功能即可。
另外,缓冲器101的长度H按照使用该缓冲器101的吸震器的大小或冲程量任意设定,所以在此不特别限定。并且,缓冲器101的上端部101a及位于吸震器的圆筒状的主体部4侧的端部101b的形状,只要形成为轴偏移管制部115比其他第2部位113的内径RI更靠近活塞杆6,就可按照装载缓冲器101的吸震器的装载部分的形状或大小等任意设定,所以在此不特别限定。
在本实施方式中,对将轴偏移管制部115配置在冲程方向S的一端侧,即,位于吸震器侧的端部101b侧的情况进行了说明,但关于轴偏移管制部115的配置,不限于此,例如处于冲程方向S的另一端侧(即,上端部101a),或一端侧与另一端侧之间的任意处都可以。另外,轴偏移管制部115越靠近吸震器的圆筒状的主体部4侧(靠近端部101b)配置,管制轴偏移的效果越好,所以,即使将轴偏移管制部115配置于所述端部101b以外时,也优选尽量靠近吸震器的圆筒状的主体部4侧(靠近端部101b)配置。
并且,关于配置轴偏移管制部115的数量,可以配置2个以上的轴偏移管制部115,也可以按照波纹部111的长度H任意设定。并且,在附图中,记载了在轴偏移管制部115与活塞杆6之间存在微小空间的例子,但不限于此,轴偏移管制部115也可以滑接于活塞杆6。
关于第1部位112及第2部位113的数量,在附图中示出了遍及波纹部111的上端101a至下端101b,设定3个第1部位112的同时,设定3个第2部位113的例子,但不限于此,按照使用目的或用途可以对其进行增减变更。
在此,对本实施方式的缓冲器101的制造方法进行说明。
本实施方式的缓冲器101的制造方法为例如用压吹成型法成型的方法。以下,对用压吹成型法成型缓冲器101时的一例进行说明。
首先,如图5A所示,从挤出机121挤出至模120的、熔融的热塑性树脂材料朝向模120的上方经以环状开口的挤出口120a,其一部分供给到提升部件140a而保持,之后,调整提升部件140a的提升速度和热塑性树脂材料的挤出量的同时,提升型坯140成为所希望的壁厚。此时,型坯140成为连续的筒状型坯140,在分割的模具131与模具132之间被提升(形成型坯的工序)。
另外,对模具131和模具132的内面施加沿波纹部111的外形轮廓的起伏形状的同时,模具131和模具132的上端侧的内面131a、132a突出形成,以使对准模具131和模具132时,内面131a、132a与提升部件140a的外径相符,并且,模具131和模具132的下端侧的内面131b、132b比所述起伏形状更突出,并且朝向下方延伸形成,以使对准模具131和模具132时,内面131a、132a与挤出口120a相符。
接着,如图5B所示,合模(参照图中向内的箭头)模具131和模具132(组设模具的工序)。
接着,如该图所示,从提升部件140a的吹入口130a向一端侧通过模120堵塞的型坯140的内部从吹塑喷嘴122一口气喷射压缩了的气体(例如空气)(参照图中向下的箭头)。据此,型坯140径向膨胀而粘附于模具131、132的内面。此时,由于对模具131、132的内面施加沿波纹部111的外形轮廓的起伏形状,所以型坯140沿该起伏形状粘附成薄壁状。
此后,通过冷却了的模具131、132,热塑性树脂材料以波纹部111的形状冷却而固化(成型波纹部的工序)。
并且,如图5C所示,分离模具131、132(参照图中向外的箭头),取出固化的成型品。此后,如图5D所示,通过从应该成为波纹部111的成型品切割剩余部分101c,可以完成作为最终产品的缓冲器101(波纹部111)。
此时,成型品中切割波纹部111的剩余部分101c的侧(图中上侧)成为上端部101a,图中下侧成为位于吸震器的圆筒状的主体部4侧的端部101b。
另外,就本实施方式的缓冲器101而言,位于吸震器的圆筒状的主体部4侧的端部101b侧的轴偏移管制部115的内径RM成为比其他第2部位113的内径RI更靠近活塞杆6的形状,所以说明了使用符合其形状的模具131、132的制造方法,但在制造将轴偏移管制部115配置于其他位置的缓冲器101时,与轴偏移管制部115配置于其他位置的形状相应地形成模具131、132的内面轮廓即可。例如,轴偏移管制部115处于上端部101a与位于吸震器的圆筒状的主体部4侧的端部101b的中央时,使模具131、132的内面的起伏形状与轴偏移管制部115的位置相应地突出形成即可。
另外,在本实施方式中例示了在形成型坯140之后合模(组设模具)模具131和模具132的方法,但也可以预先合模(组设模具)模具131和模具132,在该合模的模具131、模具132内组设已形成的型坯140而制造缓冲器101。
作为缓冲器101(波纹部111)制造用的热塑性树脂,可以应用聚酯系热塑性弹性体。另外,作为除此以外的热塑性树脂,例如也可以应用烯烃系弹性体、尿烷系热塑性弹性体、聚酰胺系弹性体的单体或与其他热塑性树脂的合体等。
另外,在本实施方式中说明了用压吹成型法制造缓冲器1的情况,但不限于此,也可以用挤出吹塑成型法、注射吹塑成型法制造。若为可以制造相同的缓冲器101的方法,就也可以应用其他制造方法(例如,注射成型法),制造方法是任意的。
根据本实施方式的缓冲器101,使至少1个轴偏移管制部115向中心方向凹陷而形成,以使比其他第2部位113的内径RI更靠近活塞杆6,由此在缓冲器101(波纹部111)伸缩时,轴偏移管制部115被活塞杆6引导的同时,不会沿活塞杆6脱离冲程方向S,即,不会轴偏移而移动,所以,以跟随于此的方式,不会使缓冲器101(波纹部111)整体从冲程方向S轴偏移而维持一定姿势的同时,以重叠的方式弹性变形。其结果,可以实现如下缓冲器101,即维持波纹部111自身所具有的冲击吸收特性的同时,有效稳定地吸收上述接触冲撞时的冲击。
并且,根据本实施方式的缓冲器101由于其整体使热塑性树脂薄壁化而成型,所以与使发泡尿烷树脂厚壁化而成型的以往缓冲器2相比,不仅可以谋求整体重量的减轻,而且制造时不需要大量的树脂材料,因此可以抑制制造成本。
并且,根据上述本实施方式的缓冲器101由于仅以吹塑成型由热塑性树脂构成的型坯即可成型,因此可以极大地缩短成型周期,并且可以提高缓冲器101的制造效率。
并且,根据本实施方式的缓冲器101,由于不是如以往品的发泡体,而是不存在由发泡引起的气泡的、为所谓实心波纹形状,所以可以恒定维持作为成品的缓冲器101的尺寸精度。
并且,上述热塑性树脂具有可以在从高温至低温的宽范围的温度环境下恒定维持其耐久性的材料特性。因此,即使将应用了热塑性树脂制的缓冲器101的车辆例如在寒冷地区使用,也可以经长期恒定维持该缓冲器101的冲击吸收特性,并且,即使在极低温下使用所述车辆,也可以防止缓冲器101的破损。
并且,上述热塑性树脂具有不会水解且耐水性优异的材料特性。因此,将使用热塑性树脂制的缓冲器101的车辆例如在降雨量多的湿润地区使用时,或蒸汽清洗所述车辆的车底时,也可以经长期恒定维持该缓冲器101的耐久性能。
另外,上述热塑性树脂可以直接作为成型材料再利用(循环利用),例如可以回收制造时被切割的剩余部分1c或使用完的缓冲器101,从而将此作为用于制造新的缓冲器101的成型材料循环利用。据此,可以提高材料收益率的同时,提供也考虑地球环境的、生态学的缓冲器101。
另外,本发明不限于上述本实施方式,作为如以下各变形例也取得与上述本实施方式的缓冲器101同样的效果。
作为第1变形例,也可以使图4A所示的第1部位112和第2部位113反转。即,如图4C所示,在缓冲器1001(波纹部111a)中,也可以将向中心方向的反方向突出的第1部位112c的外周面的冲程方向S的曲率半径rs设定为变得大于向中心方向凹陷的第2部位113c的外周面的冲程方向S的曲率半径rc。
这是形成为使根据上述本实施方式的缓冲器101(波纹部111)的内周面侧和外周面侧反转的形状,但即使此时也形成为如下:轴偏移管制部115(图中位于最下侧)的内径RM比第2部位113c的内径RI更靠近活塞杆6。
另外,对其他结构,由于与根据上述本实施方式的缓冲器101相同,所以省略其说明。
并且,根据上述本实施方式的缓冲器101或根据其第1变形例的缓冲器1001形成为如下:最突出部分相互的外径尺寸RE相同,并且,除了上述轴偏移管制部115以外的第2部位113的最凹陷部分相互的内径尺寸RI成为相同,但外径尺寸RE和内径尺寸RI,只要形成为上述第2部位113中至少1个轴偏移管制部115的内径RM比其他第2部位113的内径RI更靠近活塞杆6,也可以从缓冲器101、1001的上端101a到下端101b不相同。
作为第2变形例,例如,也可以形成为外径尺寸RE和内径尺寸RI朝向下端101b渐渐变小,且缓冲器101、1001的整体形状成为锥形。或者也可以形成为外径尺寸RE和内径尺寸RI朝向下端101b渐渐变大,缓冲器101、1001的整体形状成为扇形(省略图示)。并且,例如,缓冲器101、1001的整体形状可以在其中间变细成小于上端101a及下端101b的所谓鼓形状,或者可以在其中间鼓出成大于上端101a及下端101b的所谓大鼓形状。
并且,在上述本实施方式中设想了第1部位112和第2部位113向冲程方向S以圆滑曲线一体连续的情况,但不限于此,第1部位112和第2部位113可以向冲程方向S仅将这些顶部成型为圆弧状,使邻接的顶部之间成型为以直线状一体连续。
这样通过至少将顶部成型为圆弧状,可以在缓冲器101、1001收缩时,缓和向上述各顶部的应力集中。
并且,第1部位112相互的间隔(间距)P可以是沿冲程方向S的非等间隔,并且,第1部位112的曲率半径rs和第2部位113的曲率半径rc无需各自一定,也可以各自不同。
并且,在本实施方式及第1变形例中,例示了第1部位112(112c)及第2部位113(113c)的外周面及内周面从顶部到下摆部以一定曲率半径的圆弧构成的情况,但第1部位112(112c)或第2部位113(113c)的外周面及内周面无需从其顶部到下摆部以一定曲率半径的圆弧构成,例如,顶部的曲率半径和下摆部的曲率半径也可以不同。本发明的“圆弧状”并非仅指沿冲程方向S的一定曲率半径的圆弧,而是以也包含沿冲程方向S曲率半径部分不同的圆弧,或者一部分包含直线部分但作为整体观察时形成为圆弧状的情况的意思而使用。
实施方式3
在上述实施方式2中,说明了轴偏移管制部115形成为保持一定内径RM的同时,以小于第2部位的内径RI的直径保持一定的外径RN的圆筒状的情况,但轴偏移管制部115的外径RN也可以不形成为小于第2部位113的内径RI的直径。
例如,如图6A及图6B所示,实施方式3的缓冲器1的轴偏移管制部115a在冲程方向S的一端侧,即,位于波纹部111的吸震器的圆筒状的主体部4侧的端部101b被配置一个的同时,被粘结成以与第1部位112最突出部分彼此的外径尺寸RE相同直径设定的外径RN与邻接于轴偏移管制部115a的第1部位112一体连续。
即使在本实施方式的情况下,轴偏移管制部115a的内径RM也形成为比第2部位113的内径RI更靠近活塞杆6,由此,轴偏移管制部115a的内径RI与外径RN之间构成具有一定的预定厚度T2的圆板。
轴偏移管制部115a(内径RM)与活塞杆6(外径R)之间的位置关系,与上述第1实施方式相同,优选设定成相互之间存在微小的间隙的状态。另外,该间隙的大小设定为在缓冲器101(波纹部111)向冲程方向S弹性伸缩时,轴偏移管制部115a向脱离冲程方向S的方向不移动的程度即可。
此时,轴偏移管制部115a的厚度T2为具备在被活塞杆6引导时圆板形状不会变形的强度的程度的厚度尺寸即可。并且,关于具体的厚度尺寸,按照装载缓冲器101的吸震器的使用环境或使用目的设定任意的厚度尺寸,所以在此不特别限定。并且,在实施方式中说明了厚度T形成为一定的情况,但厚度T只要具备上述圆板形状不会变形的强度,也可以不是一定。
另外,关于其他结构,由于与根据上述实施方式2的缓冲器101相同,所以省略其说明。
即使将轴偏移管制部115a形成为本实施方式的情况,也可以得到与上述实施方式2同样的效果。即,由于向中心方向缩径,以使其内径RM比第2部位113的内径RI更靠近活塞杆6,所以该轴偏移管制部115a被活塞杆6引导的同时,不会沿活塞杆6远离冲程方向S,即不轴偏移地移动。
并且,作为本实施方式的轴偏移管制部115a的第1变形例,也可以设于位于吸震器的圆筒状的主体部4侧的端部101b以外。
例如,如图6C所示,就本变形例的缓冲器101的轴偏移管制部115b而言,从位于吸震器的圆筒状的主体部4侧的端部101b向上端部101a方向在第2个波纹部111的第2部位113上配置一个的同时,粘结成以与第2部位113的内径RI相同直径设定的外径RN与从所述端部101b在上端部101a方向上第2个第2部位113的内径RI部分一体连续。
此时,轴偏移管制部115a的内径RM也形成为比第2部位113的内径RI更靠近活塞杆6,由此,轴偏移管制部115a的内径RI与外径RN之间构成具有一定预定厚度T2的圆板。
这样,即使轴偏移管制部115b设于位于吸震器的圆筒状的主体部4侧的端部101b以外的波纹部111,只要向中心方向缩径,以使其内径RM比第2部位113的内径RI更靠近杆6,则取得与上述实施方式2相同的效果。
另外,即使此时,由于轴偏移管制部115越接近配置于(接近端部101b)吸震器的圆筒状的主体部4侧,管制轴偏移效果越好,所以优选也尽量接近配置于(接近端部101b)吸震器的圆筒状的主体部4侧。关于其他结构,由于与根据上述实施方式2的缓冲器101相同,所以省略其说明。
实施方式4
并且,也可以配置多个上述实施方式2及实施方式3的轴偏移管制部115。例如也可以具备:配置于位于吸震器的圆筒状的主体部4侧的端部101b的轴偏移管制部115a、和配置于端部101b以外的轴偏移管制部115b双方。此时,由于沿缓冲器101的冲程方向S管制轴偏移的部位增加,所以管制轴偏移的效果变得更好。
实施方式5
并且,在上述实施方式2及实施方式3中,说明了轴偏移管制部115设置于波纹部111的端部侧的情况,但取而代之,也可以缩径波纹部111的第2部位113,将其作为轴偏移管制部115而形成。
例如,如图7A至图7D所示,在本实施方式的缓冲器1中,沿冲程方向S交替反复构成的第1部位112和第2部位113中配置于中央的1个第2部位113以滑接于活塞杆6的方式向中心方向缩径而形成,从而构成轴偏移管制部115c。
这样,在第2部位113形成轴偏移管制部115b的情况下,波纹部111向冲程方向S弹性地伸缩时,该轴偏移管制部115a被活塞杆6引导的同时,不会沿活塞杆6脱离冲程方向S,即,不会轴偏移而移动。
例外,关于其他结构,由于与根据上述实施方式2的缓冲器101相同,所以省略其说明。
在此,对上述实施方式2至实施方式4及实施方式5的缓冲器101的效果进行评价的试验结果进行说明。另外,在本评价试验中使用了在上述实施方式5中说明的缓冲器101。
在该评价试验中,关于从没有压缩本发明的缓冲器101的初始状态(无负荷状态)(图7A),渐渐压缩的例如第1状态(图7B),及进一步压缩的例如第2状态(图7C),及最压缩的例如第3状态(图7D),以与以往品(现行品)的变形量-荷载特性(图7E)的对比评价各状态下的缓冲器101的压缩状态(变形状态:变形量)和压缩时的荷载。
由此可知,本发明的缓冲器101的压缩-荷载特性在图7E中的a点(初始状态)、b点(第1状态)、c点(第2状态)、d点(第3状态)中,成为与以往品大致相同的特性。并且可知,从上述初始状态到第3状态,缓冲器101不会从活塞杆6的冲程方向S脱离,即不会轴偏移而弹性变形。
由此,可以确认本发明的缓冲器101防止弹性变形时对吸震器的冲程方向S的颤动,并且,具有与以往品相同的性能(例如,冲击吸收特性)。
实施方式6
接着,对根据实施方式6的缓冲器进行说明。
如图8A所示,本实施方式的缓冲器208被设置于例如吸收车辆行驶中来自路面的冲击的吸震器,且构成为在该吸震器沿冲程方向S收缩时,弹性限制其冲程的同时,吸收此时产生的冲击。
在此,吸震器具备圆筒状的缸主体(主体部)4和活塞杆6(也称为缸杆或轴)而构成,所述活塞杆6相对于缸主体4沿冲程方向S进退(突没)自如地被支承。此时,活塞杆6通过在冲程方向S两侧配置的对方部件伸缩自如地被支承。另外,在以下说明中,设想例如向车体侧防震支承活塞杆6的支承部件14作为一方的对方部件,并且,设想例如缸主体4作为另一方的对方部件。
根据所述结构,在车辆行驶中,荷载作用于悬架(例如包含来自路面的冲击或震动等的力)时,按照该荷载的大小,根据活塞杆6相对于缸主体4沿冲程方向S相对地伸缩(冲程),可以吸收其作用的荷载,并使该悬架的移动衰减(缓冲)。
设置于这种吸震器的缓冲器208具备空心圆筒状的波纹部216,所述波纹部沿吸震器的冲程方向S延伸,且沿冲程方向S弹性地伸缩自如。另外,波纹部216只要作为弹性地伸缩自如的弹性体而构成,就可以任意设定其结构。此时,伸缩自如是指波纹部216按照负荷向冲程方向S弹性变形而收缩,相反,通过解除负荷,波纹部216通过自身的恢复力(弹力)伸长。
作为其一构成例,图8A所示的波纹部216使热塑性树脂薄壁化而成型,并且沿吸震器的冲程方向S(活塞杆6的冲程方向S)交替配设向中心方向的反方向(放射方向)突出的第1部位216a和向中心方向凹陷的第2部位216b而构成。若具体说明,第1部位216a其整体沿冲程方向S以圆弧状突出而成型,另一方面,第2部位216b其整体沿冲程方向S以圆弧状凹陷而成型。
另外,在附图中作为一例,将第1部位216a整体的冲程方向S的曲率半径设定为小于第2部位216b整体的冲程方向S的曲率半径,但各曲率半径的大小值按照该缓冲器208的例如使用目的或使用环境设定为最佳值,所以在此对数值不特别限定。并且,第1部位216a和第2部位216b的配设数量,由于按照应用该缓冲器208的吸震器的例如大小或形状任意设定,所以在此对数值不特别限定。
进一步,在附图中作为一例,将构成波纹部216的第1部位216a相互及第2部位216b相互的直径尺寸或壁厚、及沿冲程方向S的间隔(间距)设定成一定,但这些直径尺寸或壁厚及间隔(间距)例如按照应该赋予缓冲器208(波纹部216)的弹力的大小或弹性特性等任意设定,所以在此对数值不特别地限定。
并且,在附图中作为一例,设定上述第1部位216a及第2部位216b的规格(例如曲率半径、直径尺寸、间隔等),以使缓冲器208(波纹部216)的整体形状(轮廓形状)呈圆锥形,但不限于此,也可以使缓冲器208(波纹部216)的中央部分比其他部分更凹陷,或也可以使缓冲器208(波纹部216)的整体形状成为大致圆筒形。此时,缓冲器208(波纹部216)的整体形状,按照设置该缓冲器208的吸震器侧的例如空间或周边结构任意设定,所以在此不特别限定。
另外,作为缓冲器208制造用的热塑性树脂,可以应用聚酯系热塑性弹性体。另外,作为除此以外的热塑性树脂,例如可以应用烯烃系弹性体、尿烷系热塑性弹性体、聚酰胺系弹性体的单体或混合了其他热塑性树脂的合体(alloy)树脂等。
在本实施方式中,就上述缓冲器208而言,波纹部216经由弹性变形在冲程方向S收缩装入于将吸震器的活塞杆6在冲程方向S的两侧伸缩自如地支承的对方部件相互之间。并且,在其装入的状态中,经由波纹部216本身的弹力(恢复力),在其两端侧设置的环状第1及第2端部P1、P2相对于对方部件弹性地压接而被支承。
在此作为一例,设想如下情况:设置于波纹部216的一端侧的环状第1端部P1(图8A中为上端侧)压接支承于设置在作为一方的对方部件的活塞杆6的前端侧的支承部件214,并且,设置于波纹部216的另一端侧的环状的第2端部P2(图8A中为下端侧)压接支承于作为另一方的对方部件的缸主体4。此时,缓冲器208的第1端部P1及第2端部P2的结构,按照分别弹性地压接的对方部件的结构任意地设定。
在附图中作为其一例,作为一方的对方部件的支承部件214的被压接面214m(与缸主体4侧对置且第1端部P1压接的面)呈大致平坦状而构成,并且,作为另一方的对方部件的缸主体4的被压接面210m(与支承部件214侧对置且第2端部P2压接的面)呈大致平坦状而构成。
并且,按照所述结构,第1端部P1的压接面M1(压接于支承部件14的被压接面214m的周状端面)呈大致平坦状而构成,并且,第2端部P2的压接面M2(压接于缸主体4的被压接面210m的周状端面)呈大致平坦状而构成。
根据该结构,缓冲器208以如下状态维持:压接成其压接面M1相对于支承部件214的被压接面214m以面状粘附,并且,压接成其压接面M2相对于缸主体4的被压接面210m以面状粘附。此时,波纹部216通过本身的弹力(恢复力)维持成如下状态,即,缓冲器208的第1及第2端部P1、P2夹持于上述对方部件214、4相互之间的状态,换言之,其第1及第2端部P1、P2相对于上述的对方部件214、4以预定的压接力F突出的状态。据此,波纹部216的第1及第2端部P1、P2相对于上述对方部件214、4稳定且无颤动地弹性地压接,以其状态牢固且可靠地固定。
在此,缓冲器8的第1及第2端部P1、P2压接于上述对方部件214、4时的压接力F对应于使作为弹性体的波纹部216收缩时蓄积于该波纹部216的本身恢复力(弹力)的大小。因此,为了以所希望的压接力F使缓冲器8的第1及第2端部P1、P2压接于上述对方部件214、4,对应于此,优选在使该波纹部216收缩预定量的状态下,装入上述对方部件214、4相互之间。
顺便提及,吸震器例如按照车辆行驶中来自路面的冲击的程度,活塞杆6相对于缸主体4,其冲程长度在最大和最小范围内沿冲程方向S相对地伸缩(冲程)。因此,即使该吸震器的冲程长度成为最大时,也需要使缓冲器208的第1及第2端部P1、P2维持成压接于上述对方部件214、4的状态。此时,准备长于最大冲程长度的缓冲器208,使该波纹部216收缩而装入上述对方部件214、4相互之间,则不管上述吸震器的冲程长度如何,都可以用所希望的压接力F将缓冲器208的第1及第2端部P1、P2始终维持成压接于上述对方部件214、4的状态。
若具体说明,在图8C中例示了吸震器伸长为最大冲程长度H1的状态。此时的最大冲程长度H1可通过在冲程方向S两侧伸缩自如地支承活塞杆6的上述对方部件214、4相互之间而规定。若详细记述,最大冲程长度H1被规定为作为一方的对方部件的支承部件214的被压接面214m与作为另一方的对方部件的缸主体4的被压接面210m之间的沿冲程方向S的长度H1。
在图8D中,例示了比上述最大冲程长度H1沿冲程方向S更长地成型的缓冲器208的结构。另外,在附图中作为一例,在缓冲器208中设有从其第2端部P2连续且可沿缸主体4的外周面210s嵌合的空心圆筒状的环状部P3(作为包含该环状部P3的总称,有时还称为第2端部P2)。这样,缓冲器208的沿冲程方向S的长度H2被规定为第1端部P1的压接面M1与环状部P3的下端面M3之间的沿冲程方向S的长度H2。此时,缓冲器208的沿冲程方向S的长度H2成为冲程方向S的荷载不作用于该缓冲器208的无负荷状态下的自然长度H2。
从该状态,使处于自然长度H2的缓冲器208的波纹部216沿冲程方向S收缩预定量。此时,作为使波纹部216收缩的程度,使该波纹部216在冲程方向S收缩缓冲器208的长度(即,第1端部P1的压接面M1和环状部P3的下端面M3之间的沿冲程方向S的长度)至少低于吸震器的最大冲程长度H1的程度即可。若进行其他采用的方法,作为使波纹部216收缩的程度,使该波纹部216在冲程方向S收缩至少超过吸震器的最大冲程长度H1和缓冲器208的自然长度H2的差(H2-H1)的程度即可。
在图8B中示出了将使波纹部216向冲程方向S收缩了的缓冲器208设置于吸震器的状态,即,将缓冲器208装入于上述对方部件214、4相互之间的状态。此时,缓冲器208的波纹部216向冲程方向S收缩,第1端部P1的压接面M1处于从作为一方的对方部件的支承部件214的被压接面214m向箭头T方向远离的状态的同时,处于环状部P3的下端面M3从缸主体4的被压接面210m远离的状态。因此,缓冲器208的第2端部P2的压接面M2成为从作为另一方的对方部件的缸主体4的被压接面210m向箭头T方向远离的状态。
在该状态中,若解除作用于波纹部216的收缩力,则该波纹部216通过本身的恢复力(弹力)伸长,缓冲器208的第1及第2端部P1、P2相对于上述对方部件214、4弹性地压接。具体地,第1端部P1压接于作为一方的对方部件的支承部件214,同时第2端部P2接于作为另一方的对方部件的缸主体4。此时,缓冲器208维持如下状态:压接成其压接面M1相对于支承部件214的被压接面214m以面状粘附,并且压接成其压接面M2相对于缸主体4的被压接面210m以面状粘附。
此时,缓冲器208经由波纹部216的弹力(恢复力)维持成第1及第2端部P1、P2夹持于上述对方部件214、4相互之间的状态(第1及第2端部P1、P2相对于上述对方部件214、4以预定的压接力F突出的状态)。由此,如图8A所示,就缓冲器208而言,第1及第2端部P1、P2相对于上述对方部件214、4稳定且无颤动地弹性地压接,在该状态下牢固且可靠地被支承。
在此,在结束上述装入工艺之后,若考察缓冲器208的第1及第2端部P1、P2压接于上述对方部件214、4的状态的、其压接力F(图8A),则该压接力F的大小成为对应(一致)蓄积于波纹部216本身的弹力(恢复力)的力量。此时,在第1及第2端部P1、P2压接于上述对方部件214、4的状态中,缓冲器208维持成沿冲程方向S的长度仅收缩上述吸震器的最大冲程长度H1与波纹部216的自然长度H2的差(H2-H1)的状态。
一般公知,弹性体的弹力(恢复力)与该弹性体的收缩量成比例而增减变化。这样,如图8A所示,在处于第1及第2端部P1、P2压接于上述对方部件214、4的状态的缓冲器208(波纹部216)上蓄积如下弹力(恢复力),即,与仅收缩上述吸震器的最大冲程长度H1与缓冲器208的自然长度H2的差(H2-H1)的收缩量成比例的弹力(恢复力)。并且,通过此时蓄积的弹力(恢复力),缓冲器208的第1及第2端部P1、P2以压接力F压接支承于上述对方部件214、4。
因此,通过任意设定上述吸震器的最大冲程长度H1与缓冲器208的自然长度H2的差(H2-H1),可以任意调整应该蓄积于缓冲器208(波纹部216)本身的弹力(恢复力),其结果,可以使缓冲器208(第1及第2端部P1、P2)相对上述对方部件214、4的压接力F任意增减变化。由此,仅以任意设定上述吸震器的最大冲程长度H1与缓冲器208的自然长度H2的差(H2-H1),例如可按照吸震器的使用目的或使用环境,在其第1及第2端部P1、P2相对于上述对方部件214、4以最佳的压接力F压接的状态下,在吸震器设置缓冲器208,即可以装入于上述对方部件214、4相互之间。
在此,对具有上述波纹部216的缓冲器208的制造方法进行说明。在此,作为制造方法的一例,设想压吹成型法。
首先,如图9A所示,进行初始成型处理。此时,从挤出机218挤出至模220的、熔融的热塑性树脂材料朝向模220的上方经以环状开口的挤出口220a之后,供给到提升部件222而保持,从而成型为预定形状。
接着,进行提升部件222的提升处理。此时,调整提升部件222的提升速度和热塑性树脂材料的挤出量的同时,控制型坯224的壁厚。由此,型坯224以不间断地筒状连续的状态,提升至分割的模具226、228相互之间。另外,对模具226、228相互的内面施加沿波纹部216的外形轮廓的起伏形状。
接着,如图9B所示,在合模模具226、228相互之后,进行吹塑成型处理。此时,从设置于提升部件222的吹塑喷嘴230朝向型坯224内喷射压缩的气体(例如空气)。由此,型坯224向径向膨胀而粘附于模具226、228相互的内面,施加于模具226、228相互的内面的起伏形状转印至型坯224,成型相当于薄壁化的波纹部216(图8A)的部位。之后,通过冷却模具226、228使热塑性树脂材料固化,从而使粘附于模具226、228相互的内面的型坯224稳定成波纹部216的形状。
之后,如图9C所示,分离模具226、228,取出使型坯224固化的成型品之后,接着,如图9D所示,从该成型品切除剩余部分224a。由此,如图8D所示,可以完成具有自然长度H2的薄壁化的波纹部216的缓冲器208。
另外,在此作为一例,对形成型坯224之后,进行模具226、228相互的合模处理的方法进行了说明,但取而代之,也可以通过预先合模处理模具226、228相互之后组设筒状连续的型坯224的方法,制造具有上述自然长度H2的波纹部216的缓冲器208。
以上,根据本实施方式,经由缓冲器208的波纹部216本身的弹力(恢复力),使第1及第2端部P1、P2弹性压接于上述对方部件214、4相互之间而固定,从而在车辆行驶时荷载作用于悬架,且吸震器的活塞杆6相对于缸主体4相对伸缩(冲程)时,波纹部216以跟随此的方式伸缩,从而可以实现吸收其作用的荷载,并使该悬架的移动衰减(缓冲)的缓冲器208。
据此,由于波纹部216在始终跟随活塞杆6的冲程的同时使悬架的移动衰减(缓冲),所以不会产生上述吸震器的触底(接触冲撞)这样的现象,通过该波纹部216连续有弹性地压缩弹性变形,可以连续有弹性地吸收作用于悬架的荷载。其结果,可以防止并且完全抑制如以往产生的接触冲撞时的冲击音或震动的产生。
即,对所述接触冲撞时的冲击音或震动的产生,虽然用例如称为橡胶缓冲器、颠簸缓冲器等的现有的冲击吸收部件无法防止,但在本实施方式中,通过该波纹部216连续有弹性地压缩弹性变形,可以防止并完全抑制如以往产生的接触冲撞时的冲击音或震动的产生。由此,由于没有如以往车辆行驶中上述冲击音或震动连续反复传播至车内的现象,所以可以飞跃地提高车辆行驶中的乘客的乘坐感或车内的安静性。
并且,根据本实施方式,如图14所示的以往缓冲器2那样,无需通过安装机构将其一端侧202a牢固且可靠地固定于对方部件,如上述装入工艺那样(图8B~图8D),仅通过使缓冲器208的波纹部216收缩而装入于上述对方部件214、4相互之间而释放其收缩力,缓冲器208的波纹部216可通过弹力(恢复力)将第1及第2端部P1、P2以所希望的压接力F压接于上述对方部件214、4,并以该状态牢固且可靠地固定。因此,与以往相比,不花费工夫或时间即可简单地将缓冲器208装入于吸震器中。并且,还可以省去用于在预定部位固定缓冲器208的第1端部P1的固定部件。
另外,本实施方式的装入工艺中,由于仅仅是在暂时收缩波纹部216之后,释放其收缩力,所以无需熟练,任何人都可以容易地且没有差错地进行该装入工艺。据此,由于无需特别的安装配件就可以将缓冲器208有效地(例如短时间且简单地)装入吸震器中,所以可以飞跃地提高缓冲器208向该吸震器的装入性,且实现由安装配件消减带来的低成本化。
并且,根据本实施方式,可以实现具有由热塑性树脂一体成型的波纹部216的缓冲器208。此时,热塑性树脂与发泡尿烷树脂不同,由于具有其耐久性或耐水性优异的材料特性,所以可以将该热塑性树脂制的缓冲器208本身作为灰尘盖兼用。因此,无需为了覆盖该缓冲器208整体而另外配置灰尘盖(未图示)。由此,由于无需例如在吸震器周围确保灰尘盖的配置空间,同时还可以削减零件件数与其对应的量,所以可以充分对应小型化或低成本化的要求。
根据这种缓冲器208,可以同时覆盖形成于吸震器的缸主体4端面的活塞杆6的插通孔210h(图8A、图8B)、和形成于防震支承于车体侧的活塞杆6的支承部件214的活塞杆6的插通孔214h(图8A、图8B)。因此,无需另外设置如以往的灰尘盖就可以防止灰尘等异物的侵入。
另外,形成于支承部件214的活塞杆6的插通孔214h通过活塞杆6的插通而堵塞时(在活塞杆6与插通孔214h之间没有形成间隙时),缓冲器208的第1端部P1也可以不设为覆盖活塞杆6的插通孔214h的结构。
并且,根据具有上述热塑性树脂制的波纹部216的缓冲器208的制造方法,如图9A~图9D所示,可以通过一系列的压吹成型法总括缓冲器208(波纹部216、第1及第2端部P1、P2及环状部P3)并且同时成型各结构。此时,如图15所示的以往缓冲器2那样,不需要与波纹部204的成型工序不同的灰尘盖206的成型工序。因此,在本实施方式的制造方法中,由于与以往相比成型工序简化,不花费工夫和时间,所以在可以飞跃地提高该缓冲器208的制造效率的同时,可以大幅度降低制造成本。
并且,根据本实施方式,可以实现具有整体使热塑性树脂薄壁化而成型的波纹部216的缓冲器208。此时,例如,与对使图14所示的发泡尿烷树脂厚壁化而成型的以往的缓冲器2的重量加上灰尘盖206的重量的重量相比,并且与图15所示的灰尘盖206一体型的以往缓冲器2的重量相比,可以减轻缓冲器208的重量。并且,与上述以往缓冲器2的波纹部204相比,通过抑制缓冲器208的波纹部216的制造中使用的树脂材料,还可以抑制缓冲器208的制造成本。
并且,根据本实施方式,在如图9A~图9D所示的一系列的压吹成型法中,仅以吹塑成型由热塑性树脂构成的型坯224就可以成型所希望形状及壁厚的波纹部216。由此,与以往相比可以极大地缩短成型周期。并且使用热塑性树脂作为成型材料,从而可以实现所谓实心的波纹部216,所以可以恒定维持作为成品的缓冲器208的尺寸精度。
并且上述热塑性树脂具有在高温到低温的宽范围的温度环境下能够恒定维持其耐久性的材料特性。因此,即使将应用具有热塑性树脂的波纹部216的缓冲器208的车辆例如在寒冷地区使用,也可以经长期恒定维持该缓冲器208(波纹部216)的冲击吸收特性,同时,即使将所述车辆在极低温下使用,也可以防止该缓冲器208(波纹部216)的破损。
并且,上述热塑性树脂具有不会水解且耐水性优异的材料特性。因此即使将使用具有热塑性树脂制的波纹部216的缓冲器208的车辆例如在降雨量多的湿润地区使用时,或蒸汽清洗所述车辆的车底时,也可以经长期恒定维持该缓冲器208(波纹部216)的耐久性能。
并且进一步,上述热塑性树脂可直接作为成型用的材料再利用(循环利用),例如可以回收在如图9D所示的制造时切除的剩余部分224a或使用完的缓冲器208,并将此作为用于制造新的缓冲器的成型材料而循环利用。据此,可以实现提高材料收益率的同时,考虑到地球环境的、生态学的缓冲器208。
在此,参照图10A~图10E对关于上述缓冲器208(波纹部216)的效果进行评价的试验结果进行说明。
在该评价试验中,关于从没有压缩缓冲器208(波纹部216)的无负荷的初始状态(图10A),渐渐压缩的第1状态(图10B),及进一步压缩的第2状态(图10C),并且最大压缩的例如第3状态(图10D)的各个状态,与以往品(现行品)的变形量-荷载特性(图10E)进行对比来评价各状态下的缓冲器208(波纹部216)的变形量与荷载的关系。
由此可知,如图10E所示,上述缓冲器208(波纹部216)的压缩-荷载特性,在a点(初始状态)、b点(第1状态)、c点(第2状态)、d点(第3状态)中,成为与以往品大致相同的特性。由此可以确认,上述缓冲器208(波纹部216)具有与以往品的性能相同程度的性能(例如,冲击吸收特性)。
另外,上述实施方式的作用及效果,例如在如图11A、图11B所示的缓冲器208(波纹部216)中也同样可以实现。
如图11A所示的变形例所涉及的缓冲器208相对于图8A所示的波纹部216的结构,使向中心方向的反方向(放射方向)突出的第1部位216a和向中心方向凹陷的第2部位216b反转而构成。
在图11B所示的其他变形例所涉及的缓冲器208中,其第1端部P1不直接压接于支承部件214,而压接于设置于支承部件214的压接用结构体W。此时,压接用结构体W不限于图中所示的形状,按照其使用目的设定任意形状,所以对应于此,可以设定缓冲器208的第1端部P1的形状或大小等。
并且,在上述实施方式中,波纹部216沿冲程方向S(图8A)弹性伸缩时,也可以将恒定维持缓冲器208内的空气压的空气压调整机构设置于例如第1及第2端部P1、P2而构成缓冲器208。空气压调整机构具备有连通路,所述连通路可在波纹部216沿冲程方向S伸缩时,在缓冲器208的内部与外部之间进行空气流出及流入。此时,由于设想吸震器在暴露于车辆行驶中从路面弹回的水等的环境下使用的情况,所以优选连通路成管制水侵入缓冲器208的内部的结构。
在此,只要在缓冲器208的任意部位至少具有1个空气压调整机构的连通路即可,在图12A中作为一例,表示在第1端部P1形成的连通路。另外,波纹部216朝向第1端部P1呈锥形,该第1端部P1呈沿活塞杆6(图8A)的外周可嵌合的空心圆筒状而构成。
此时,在缓冲器208的第1端部P1设置有开口槽232和引导槽234,所述开口槽以横切其压接面M1的方式部分凹陷而形成,所述引导槽从开口槽232沿第1端部P1的内周面连续并朝向波纹部216内而形成,并构成为1个如下连通路:从这些开口槽232起通过引导槽234,遍及从缓冲器208(波纹部216)内至缓冲器208(波纹部216)外地连通。
另外,由于从开口槽232通过引导槽234构成的连通路的大小(例如,宽度、槽深)按照缓冲器208的第1端部P1的形状或大小任意设定,所以在此不特别限定,但特别是开口槽232若设定为过大,则由于来自外部的异物(例如,水、尘埃)容易侵入波纹部216内,所以考虑此优选较小地设定。由此,可以管制水侵入缓冲器208(波纹部216)的内部。
并且,在附图中,沿缓冲器208的第1端部P1向周向以预定间隔设置多个从开口槽232通过引导槽234构成的连通路,但该连通路的数量由于按照缓冲器208的第1端部P1的形状或大小任意设定,所以在此不特别限定。另外,在附图中示出呈大致矩形的连通路,但不限定于此,可以呈圆弧状或三角形、或者椭圆形等各种形状。
根据所述结构,由于波纹部216沿冲程方向S弹性地伸缩时,通过该连通路,在缓冲器208(波纹部216)的内部与外部之间进行空气的流出及流入,所以可以恒定维持该缓冲器208(波纹部216)内的空气压。若采用其他方法,则可以消除缓冲器208(波纹部216)内的空气压和缓冲器208(波纹部216)外的空气压的压力差。这样,不会有过剩空气压作用于波纹部216的现象,所以在波纹部216压缩时内部不会成为加压,不会影响该波纹部216的弹簧特性,从而可以得到目的的弹簧特性。并且,由于没有向波纹部216提供多余的压力变化,所以可以防止该波纹部216的早期劣化。
而且,作为在缓冲器208的第1端部P1成型上述连通路(开口槽232、引导槽234)的方法,可以通过对在例如图9A的初始成型处理中使用的提升部件222的内侧,施加用于成型上述连通路(开口槽232、引导槽234)的结构,在该初始成型处理中总括地成型连通槽。由此,可以完成在第1端部P1一体成型上述连通路(开口槽232、引导槽234)的缓冲器208。
由此,可以直接利用上述实施方式中的缓冲器208的制造方法(图9A~图9D),并且,无需用于成型上述连通路(开口槽232、引导槽234)的个别处理,就可以完成在上述第1端部P1一体成型上述连通路(开口槽232、引导槽234)的缓冲器208。因此,可以提供低成本且制造效率优异的缓冲器208。
并且在图12B中作为一例,示出在缓冲器208的第2端部P2形成的连通路。此时,缓冲器208呈第2端部P2(具体地,包含于第2端部P2的环状部P3)沿缸主体4的外周面210s可嵌合的空心圆筒状而构成。
在该结构中,在缓冲器208的环状部P3构成有从缸主体4的外周面210s部分远离的远离部236,在该远离部236的内面236s与缸主体4的外周面210s之间构成有遍及从缓冲器208(波纹部216)内至缓冲器208(波纹部216)外地连通的1个连通路238。
另外,由于在远离部236的内面236s与缸主体4的外周面210s之间构成的连通路238的大小(例如,宽度、通路长)按照缓冲器208的环状部P3(第2端部P2)的形状或大小任意地设定,所以在此不特别限定,但特别是连通路238的通路长若设定为过短,则来自外部的异物(例如,水、尘埃)容易侵入波纹部216内。所以考虑此情况优选较长地设定。由此,实现可将缓冲器208(波纹部216)内维持成防水状态的结构。
并且,在附图中,沿缓冲器208的第2端部P2向周向以预定间隔设置多个在远离部236的内面236s与缸主体4的外周面210s之间构成的连通路238,但该连通路的数量按照缓冲器208的环状部P3(第2端部P2)的形状或大小任意设定,所以在此不特别限定。另外,虽然在附图中示出呈大致矩形的连通路,但不限定于此,例如可以设为圆弧状或三角形、或者椭圆形等各种形状。
根据所述结构,波纹部216沿冲程方向S弹性地伸缩时,由于通过该连通路238,在缓冲器208(波纹部216)的内部与外部之间进行空气的流出和流入,所以可以恒定维持该缓冲器208(波纹部216)内的空气压。若采用其他方法,可以消除缓冲器208(波纹部216)内的空气压与缓冲器208(波纹部216)外的空气压的压力差。这样,由于可以消除过剩空气压作用于缓冲器208(波纹部216),所以在缓冲器208(波纹部216)压缩时内部不会变得加压,不会影响该波纹部216的弹簧特性,从而可以得到目的的弹簧特性。并且,由于向波纹部216不提供多余的压力变化,所以可以防止该波纹部216的早期劣化。
并且,作为在缓冲器208的第2端部P2成型上述连通路238的方法,在例如图9B的吹塑成型处理中使用的模具226、228相互的内面,施加用于成型上述连通路238的结构,即在模具226、228相互的内面施加沿远离部236的外形轮廓的凹部即可。由此,在该吹塑成型处理中可以总括地成型远离部236,其结果,可以完成在第2端部P2上一体成型上述远离部236的缓冲器208。
由此,可以直接利用上述实施方式中的缓冲器208的制造方法(图9A~图9D),并且,无需用于成型上述远离部236的个别处理,就可以完成在第2端部P2一体成型上述远离部236的缓冲器208。因此,可以提供低成本且制造效率优异的缓冲器208。
另外,在图12A、图12B中,设想仅在缓冲器208的第1端部P1或第2端部P2中任意一方构成上述空气压调整机构的情况,但不限于此,也可以在缓冲器208的第1端部P1和第2端部P2双方同时构成上述空气压调整机构。
并且,在上述实施方式中,设想向吸震器装入缓冲器208之后,经由波纹部216本身的弹力(恢复力),将第1及第2端部P1、P2弹性地压接于上述对方部件214、4相互之间而固定的情况,但取而代之,也可以向吸震器装入缓冲器208之后,使缓冲器208以保持成自然长度H2(图8D)的状态支承于对方部件214、4相互之间。
此时,如图8B所示,就向吸震器装入缓冲器208的装入方法而言,使缓冲器208的波纹部216收缩而装入于上述对方部件214、4相互之间,释放其收缩力。此时,缓冲器208经由波纹部216的弹力(恢复力)向冲程方向S伸长至自然长度H2,第1及第2端部P1、P2成为相对于上述对方部件214、4无间隙地对置的状态。具体而言成为如下状态:第1端部P1的压接面M1相对于支承部件214的被压接面214m无间隙地(或以稍微远离的状态)对置,并且第2端部P2的压接面M2相对于缸主体4的被压接面210m无间隙地(或以稍微远离的状态)对置。
为了使缓冲器208以这种状态支承于对方部件214、4相互之间,如下构成缓冲器208即可,在自然长度H2(图8D)中,沿着第1端部P1的压接面M1与第2端部P2(环状部P3)的下端面M3之间的冲程方向S的长度H3与吸震器的最大冲程长度H1(图8C)一致或大致一致。

Claims (15)

1.一种缓冲器,其设置于吸震器的活塞杆的附近,用于弹性地限制所述吸震器收缩时的冲程,同时吸收此时所产生的冲击,其特征在于,
该缓冲器具备沿所述吸震器的冲程方向延伸的空心圆筒状的波纹部,
所述波纹部使热塑性树脂薄壁化而成型,同时具备向中心方向的反方向突出的第1部位和向中心方向凹陷的第2部位,所述第1部位和所述第2部位沿冲程方向被交替反复设置。
2.如权利要求1所述的缓冲器,其特征在于,
所述第1部位的顶部及所述第2部位的顶部沿冲程方向形成为圆弧状。
3.如权利要求1或2所述的缓冲器,其特征在于,
所述第2部位的外周面及内周面沿冲程方向形成为圆弧状,
所述第1部位的外周面的冲程方向的曲率半径小于所述第2部位的外周面的冲程方向的曲率半径。
4.如权利要求1或2所述的缓冲器,其特征在于,
所述第1部位的外周面及内周面沿冲程方向形成为圆弧状,
所述第2部位的外周面的冲程方向的曲率半径小于所述第1部位的外周面的冲程方向的曲率半径。
5.如权利要求1所述的缓冲器,其特征在于,
具备轴偏移管制部,该轴偏移管制部管制所述波纹部对所述活塞杆的轴偏移。
6.如权利要求5所述的缓冲器,其特征在于,
所述轴偏移管制部设于位于所述吸震器侧的端部。
7.如权利要求6所述的缓冲器,其特征在于,
所述轴偏移管制部与所述波纹部连续一体成型,并向中心方向缩径,以比所述第2部位更靠近所述活塞杆。
8.如权利要求5所述的缓冲器,其特征在于,
所述轴偏移管制部设于所述波纹部。
9.如权利要求8所述的缓冲器,其特征在于,
所述轴偏移管制部与所述波纹部连续一体成型,并向中心方向缩径,以比所述第2部位更靠近所述活塞杆。
10.如权利要求1所述的缓冲器,其特征在于,具备:
环状的第1端部,其设置于所述波纹部的一端侧;及
环状的第2端部,其设置于所述波纹部的另一端侧,
所述第1端部支承于支承部件,所述支承部件设置于所述吸震器的活塞杆的前端侧,
所述第2端部支承于所述吸震器的缸主体。
11.如权利要求10所述的缓冲器,其特征在于,
所述第1端部以通过所述波纹部的弹力压接于所述支承部件的状态,而所述第2端部以通过所述波纹部的弹力压接于所述缸主体的状态,被装入于所述支承部件与所述缸主体之间。
12.如权利要求10或11所述的缓冲器,其特征在于,
所述缓冲器具备有连通路,在所述波纹部沿所述冲程方向伸缩时,能够在所述波纹部的内部与外部之间进行空气的流出及流入。
13.如权利要求12所述的缓冲器,其特征在于,
所述连通路设置于所述第1端部或所述第2端部中的至少一方。
14.如权利要求12或13所述的缓冲器,其特征在于,
所述连通路形成管制水侵入所述波纹部的内部的结构。
15.一种缓冲器的制造方法,所述缓冲器具备有空心圆筒状的波纹部,所述波纹部设置于吸震器的活塞杆的附近,用于弹性地限制所述吸震器收缩时的冲程,同时吸收此时产生的冲击,并且沿所述吸震器的冲程方向延伸,所述波纹部使热塑性树脂薄壁化而成型,同时具备向中心方向的反方向突出的第1部位和向中心方向凹陷的第2部位,所述第1部位和所述第2部位沿冲程方向被交替反复设置,其特征在于,该制造方法具有:
在由热塑性树脂构成的型坯的外周侧组设模具的工序,所述模具对内面施加沿所述波纹部的外形轮廓的起伏形状,或者在对内面施加沿所述波纹部的外形轮廓的起伏形状的模具的所述内面侧组设由热塑性树脂构成的型坯的工序中的任意一个工序;及
向所述型坯内喷射气体,使所述型坯膨胀而成型所述波纹部的工序。
CN2009801243116A 2008-06-26 2009-06-26 缓冲器及其制造方法 Pending CN102076989A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2008-167226 2008-06-26
JP2008167226 2008-06-26
JP2009023266 2009-02-04
JP2009-023266 2009-02-04
JP2009-055021 2009-03-09
JP2009055021 2009-03-09
PCT/JP2009/061783 WO2009157567A1 (ja) 2008-06-26 2009-06-26 バンプストッパ及びその製造方法

Publications (1)

Publication Number Publication Date
CN102076989A true CN102076989A (zh) 2011-05-25

Family

ID=41444627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801243116A Pending CN102076989A (zh) 2008-06-26 2009-06-26 缓冲器及其制造方法

Country Status (4)

Country Link
US (3) US20110156327A1 (zh)
JP (1) JP5503537B2 (zh)
CN (1) CN102076989A (zh)
WO (1) WO2009157567A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619539A (zh) * 2012-03-29 2012-08-01 辽宁工程技术大学 一种矿用快速吸能防冲让位支护构件
CN103133583A (zh) * 2011-11-23 2013-06-05 现代自动车株式会社 车辆悬架用塑料复合弹簧及其制造装置和方法
CN103671673A (zh) * 2012-09-05 2014-03-26 许容薰 用于缓冲装置的缓冲块
CN105102865A (zh) * 2013-09-12 2015-11-25 住友理工株式会社 防尘罩
US9394962B2 (en) 2013-09-12 2016-07-19 Sumitomo Riko Company Limited Dust cover
CN107002659A (zh) * 2014-06-25 2017-08-01 森塞拉能源公司 挠曲装置、线性旋转转换器以及***
CN112879485A (zh) * 2020-04-27 2021-06-01 北京京西重工有限公司 空气悬架组件和用于空气悬架组件的波纹管

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193851A1 (en) * 2010-08-12 2012-08-02 E.I.Du Pont De Nemours And Company Thermoplastic jounce bumpers
US8657271B2 (en) * 2010-08-12 2014-02-25 E I Du Pont De Nemours And Company Thermoplastic jounce bumpers
CN102306839A (zh) * 2011-08-09 2012-01-04 杭州海孚新能源科技有限公司 圆柱形锂离子电池弹性支撑环
ITTO20120473A1 (it) * 2012-05-31 2013-12-01 Insit Ind S P A Tampone smorzatore per sospensioni di autoveicoli
KR101698332B1 (ko) 2012-06-28 2017-01-20 생-고뱅 퍼포먼스 플라스틱스 코포레이션 고분자 벨로우즈 스프링
JP5303058B1 (ja) * 2012-09-11 2013-10-02 容薫 許 緩衝装置用バンプストッパ
JP6004580B2 (ja) 2013-03-22 2016-10-12 住友理工株式会社 ダストカバー組立体
KR101551061B1 (ko) 2014-02-17 2015-09-07 현대자동차주식회사 더스트 커버 일체형 범퍼스토퍼
JP5798656B1 (ja) * 2014-03-26 2015-10-21 住友理工株式会社 ウレタン製バンパスプリングおよびその製法
JP6294728B2 (ja) * 2014-03-28 2018-03-14 Kyb株式会社 ダストブーツ、ダストブーツの製造方法および緩衝器
BR112017013889A2 (pt) 2015-02-18 2018-03-06 Du Pont batente e sistema de suspensão automotiva
DE102016002205B3 (de) * 2016-02-25 2017-08-10 Audi Ag Federvorrichtung mit einem Wellrohrkörper
JP6567761B2 (ja) * 2016-03-10 2019-08-28 Nok株式会社 緩衝ストッパー
US10337577B2 (en) * 2016-11-04 2019-07-02 Raytheon Company Bi-directional non-linear spring
KR20190087021A (ko) * 2018-01-15 2019-07-24 주식회사 건화이엔지 더스트 커버가 일체를 이루는 범퍼 스톱퍼
JP7101054B2 (ja) * 2018-06-12 2022-07-14 Nok株式会社 無人航空機の防振構造
JP7223369B2 (ja) * 2019-03-27 2023-02-16 株式会社Subaru ダストカバー、サスペンション装置及びダストカバーの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176272A (ja) * 1988-12-28 1990-07-09 Ishikawa Tekko Kk 合成樹脂製ダストブーツおよびその製造方法
JPH0892423A (ja) * 1994-09-27 1996-04-09 Toyo Tire & Rubber Co Ltd 防振ゴム組成物
JPH08247204A (ja) * 1995-03-15 1996-09-24 Showa:Kk 緩衝器用バンプストッパ
JPH11153176A (ja) * 1997-11-20 1999-06-08 Bridgestone Corp バンパーラバー
CN101124257A (zh) * 2005-02-22 2008-02-13 巴斯福股份公司 基于多孔聚氨酯弹性体的圆柱形模制品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708112A (en) * 1951-10-16 1955-05-10 Dunlop Rubber Co Shock absorbers
FR1558529A (zh) * 1968-01-09 1969-02-28
FR2427515A1 (fr) * 1978-05-29 1979-12-28 Peugeot Dispositif protecteur, notamment pour tige d'amortisseur telescopique
JPS5824032Y2 (ja) * 1978-07-21 1983-05-23 カヤバ工業株式会社 緩衝機の最圧縮時の衝撃緩和装置
US4235427A (en) * 1979-05-07 1980-11-25 Walter Bialobrzeski Spring
JPS6032110U (ja) * 1983-08-11 1985-03-05 株式会社 モルテン サスペンションのストップラバ−構造
JPS6256842U (zh) * 1985-09-30 1987-04-08
DE3713699C2 (de) * 1986-05-02 1994-12-01 Volkswagen Ag Karosserieseitige Lagerung eines Federbeins oder Federdämpfers eines Kraftfahrzeuges
JPH0224135U (zh) * 1988-07-04 1990-02-16
US4989884A (en) * 1989-03-13 1991-02-05 Goodman Clarence R Automotive boot
US5901947A (en) * 1995-06-07 1999-05-11 North American Parts Distributors Inc. One piece bumper-bellows subassembly
EP1089890A1 (fr) * 1998-06-26 2001-04-11 Compagnie Générale des Etablissements Michelin - Michelin Attache superieure de jambe macpherson
DE60011912T2 (de) * 1999-08-06 2005-08-25 Toyo Tire & Rubber Co., Ltd. Faltenbalg hergestellt aus harz und verfahren zur herstellung
WO2008137029A2 (en) * 2007-05-01 2008-11-13 E. I. Du Pont De Nemours And Company Jounce bumpers made by corrugated extrusio

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176272A (ja) * 1988-12-28 1990-07-09 Ishikawa Tekko Kk 合成樹脂製ダストブーツおよびその製造方法
JPH0892423A (ja) * 1994-09-27 1996-04-09 Toyo Tire & Rubber Co Ltd 防振ゴム組成物
JPH08247204A (ja) * 1995-03-15 1996-09-24 Showa:Kk 緩衝器用バンプストッパ
JPH11153176A (ja) * 1997-11-20 1999-06-08 Bridgestone Corp バンパーラバー
CN101124257A (zh) * 2005-02-22 2008-02-13 巴斯福股份公司 基于多孔聚氨酯弹性体的圆柱形模制品

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133583A (zh) * 2011-11-23 2013-06-05 现代自动车株式会社 车辆悬架用塑料复合弹簧及其制造装置和方法
CN102619539A (zh) * 2012-03-29 2012-08-01 辽宁工程技术大学 一种矿用快速吸能防冲让位支护构件
CN103671673A (zh) * 2012-09-05 2014-03-26 许容薰 用于缓冲装置的缓冲块
CN103671673B (zh) * 2012-09-05 2016-03-09 许容薰 用于缓冲装置的缓冲块
CN105102865A (zh) * 2013-09-12 2015-11-25 住友理工株式会社 防尘罩
US9394962B2 (en) 2013-09-12 2016-07-19 Sumitomo Riko Company Limited Dust cover
CN107002659A (zh) * 2014-06-25 2017-08-01 森塞拉能源公司 挠曲装置、线性旋转转换器以及***
CN112879485A (zh) * 2020-04-27 2021-06-01 北京京西重工有限公司 空气悬架组件和用于空气悬架组件的波纹管
JP7154341B2 (ja) 2020-04-27 2022-10-17 ベイジンウェスト・インダストリーズ・カンパニー・リミテッド エアサスペンション・アセンブリおよびエアサスペンション・アセンブリのためのベロー

Also Published As

Publication number Publication date
JP5503537B2 (ja) 2014-05-28
US20140284859A1 (en) 2014-09-25
US20110156327A1 (en) 2011-06-30
US20160257177A1 (en) 2016-09-08
WO2009157567A1 (ja) 2009-12-30
JPWO2009157567A1 (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
CN102076989A (zh) 缓冲器及其制造方法
JP6004580B2 (ja) ダストカバー組立体
CN103210233B (zh) 保护罩及其制造方法
US6863322B2 (en) Motor vehicle bumper
AU663108B2 (en) Elastomer rebound jounce and related compression springs
US8984715B2 (en) Cushion clip
CN1291263A (zh) 减震元件及其制造方法
EP1864864A2 (en) Bumper absorber and manufacturing method for the same
US5954168A (en) Dust cover for shock absorber and method of manufacturing the same
JP2007254920A (ja) ヘルメット用緩衝材
CN106536910A (zh) 发动机罩
JP2014062560A (ja) 車両用ダストカバー組付体およびその製造方法
JP6088876B2 (ja) ダストカバー組立体の製造方法
WO2021165535A1 (en) Jounce bumper assembly and suspension system
CN105003577A (zh) 双向减振器
US20060001205A1 (en) Jounce bumper
US20220234405A1 (en) Spring element, in particular jounce bumper, for a vehicle suspension
JP6214345B2 (ja) カバー部材
CN208348368U (zh) 复合缓冲块
KR102578275B1 (ko) 공기입 타이어
KR101719538B1 (ko) 차량용 범퍼빔 유닛
KR100471564B1 (ko) 돌출부를 구비한 사이드 가니쉬
CN113614419A (zh) 防尘罩、悬架装置及防尘罩的制造方法
JP4880308B2 (ja) 車両用衝撃吸収部材
CN105270427B (zh) 限位块及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110525