CN101830510A - 金红石相二氧化钒纳米线的制备方法及应用 - Google Patents
金红石相二氧化钒纳米线的制备方法及应用 Download PDFInfo
- Publication number
- CN101830510A CN101830510A CN 201010177821 CN201010177821A CN101830510A CN 101830510 A CN101830510 A CN 101830510A CN 201010177821 CN201010177821 CN 201010177821 CN 201010177821 A CN201010177821 A CN 201010177821A CN 101830510 A CN101830510 A CN 101830510A
- Authority
- CN
- China
- Prior art keywords
- vanadium dioxide
- rutile phase
- preparation
- vanadium
- dioxide nanowire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 title claims abstract description 77
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 239000002070 nanowire Substances 0.000 title claims abstract description 62
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 229910001456 vanadium ion Inorganic materials 0.000 claims abstract description 24
- 239000007864 aqueous solution Substances 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 15
- 239000002019 doping agent Substances 0.000 claims abstract description 10
- 238000011049 filling Methods 0.000 claims abstract description 10
- 239000007900 aqueous suspension Substances 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 238000003860 storage Methods 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 3
- 239000004984 smart glass Substances 0.000 claims abstract description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 235000006408 oxalic acid Nutrition 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 150000003682 vanadium compounds Chemical class 0.000 claims description 8
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 4
- OGUCKKLSDGRKSH-UHFFFAOYSA-N oxalic acid oxovanadium Chemical compound [V].[O].C(C(=O)O)(=O)O OGUCKKLSDGRKSH-UHFFFAOYSA-N 0.000 claims description 4
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 4
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 claims description 4
- 229940041260 vanadyl sulfate Drugs 0.000 claims description 4
- 229910000352 vanadyl sulfate Inorganic materials 0.000 claims description 4
- QLOKAVKWGPPUCM-UHFFFAOYSA-N oxovanadium;dihydrochloride Chemical compound Cl.Cl.[V]=O QLOKAVKWGPPUCM-UHFFFAOYSA-N 0.000 claims description 3
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 claims description 3
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical group O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 claims description 3
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 239000008204 material by function Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 13
- 238000001514 detection method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 4
- 229940010552 ammonium molybdate Drugs 0.000 description 4
- 235000018660 ammonium molybdate Nutrition 0.000 description 4
- 239000011609 ammonium molybdate Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 229910001219 R-phase Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- -1 niobium ion Chemical class 0.000 description 2
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- VLOPEOIIELCUML-UHFFFAOYSA-L vanadium(2+);sulfate Chemical compound [V+2].[O-]S([O-])(=O)=O VLOPEOIIELCUML-UHFFFAOYSA-L 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于无机功能材料领域,涉及一种金红石相二氧化钒纳米线的制备方法。该制备方法为先配制摩尔浓度为0.005-0.2mol/L的钒离子水溶液或混悬液;可加入掺杂剂,超声分散;将所得的液体加入水热釜中,经水热反应合成;将水热釜拿出,先急速冷却,后自然冷至室温;所得的产物经离心、洗涤、干燥,得到金红石相二氧化钒纳米线。通过改变钒离子化合物及其浓度,控制反应温度及时间、填充比、掺杂剂加入量、冷却速度等条件得到结晶性好的金红石相二氧化钒纳米线,所制备的金红石相二氧化钒纳米线长径比可以在几十至数千之间可控调整。所制得的纳米线可应用于智能窗户玻璃涂层、温控装置、光电开关、热敏电阻、光信息存储等领域。
Description
技术领域
本发明属于无机功能材料领域,涉及一种金红石相二氧化钒空心球的制备方法。
背景技术
金红石相(R相)二氧化钒是一种具有相变性质的金属氧化物。在68℃发生由低温单斜相(M相)到高温金红石相(R相)的可逆相转变。伴随着这种结构变化,其电导率、磁化率、光透过率等物理性质都发生剧烈变化,使其在智能温控薄膜、热敏电阻材料、红外探测材料方面具有很好的应用前景,金红石相二氧化钒不但可以因热感应而发生相变,而且激光同样能引起其光学透过率、电阻率的变化,因而也可以应用在光电开关(中国专利CN20030111202.5)、光信息存储以及激光武器防护装置中。由于二氧化钒的结晶相具有A相、B相、C相、R相及水合物等10余种,其中制备R相二氧化钒则成为一个技术难点,此外,用于热敏电阻,光电开关、红外探测器件中,对二氧化钒的形貌也有着特殊的要求,而二氧化钒纳米线是制备这些器件的关键材料,但二氧化钒纳米线的制备方法却鲜有报道。
Lawton等人在740℃采用喷雾热分解法分解硫酸氧钒溶液制得微米级二氧化钒粉体(Lawton;Stanley A.,Theby;Edward A.,Method for making vanadium dioxide powders,US5427763),Huang Wei-Gang等人通过热分解草酸氧钒制备了二氧化钒粉体,一种二氧化钒粉末的制备方法(Patent No.CN1986125)。
目前所报道的R相二氧化钒多采用先生成B相二氧化钒粉体然后350-800热处理生成R相二氧化钒粉体,(彭子飞等人的相变温度可控钨掺杂纳米二氧化钒粉体的制备工艺,Patent No.CN101164900;黄驰等人的一种二氧化钒粉末的制备方法,Patent No.CN1986125),以及一步反应生成B相二氧化钒,(邹建;林华的B相纳米二氧化钒的制备方法,Patent No.CN101041464;陈文等人的二氧化钒纳米棒及其制备方法Patent No.CN1522965)。所制备的金红石相粉体大多为粉末和棒状,尚未见到关于一步水热合成金红石相二氧化钒纳米线的相关报道。本发明所制备金红石相纳米线不仅可以应用于智能节能涂层,也可以应用于太阳能温控装置,微型光开关器件、热敏电阻、光信息存储等领域。
发明内容
本发明的目的是提供一种金红石相二氧化钒纳米线的制备方法,尤其是采用水热法一步合成金红石相二氧化钒纳米线,以克服现有技术的不足。
为了解决上述现有技术的缺陷,本发明提供的技术方案如下:
一种金红石相二氧化钒纳米线的制备方法,包括如下步骤:
(1)配制摩尔浓度为0.005-0.2mol/L的钒离子水溶液或混悬液。
所述步骤(1)中钒离子为四价钒离子;
所述四价钒离子的水溶液或混悬液为四价钒化合物与水混合或五价钒化合物与草酸在水中混合后获得。
所述的四价钒化合物包括硫酸氧钒(VOSO4)、二氯氧钒(VOCl2)、草酸氧钒(VOC2O4·5H2O)。
所述的五价钒化合物包括偏钒酸钠、五氧化二钒。
当加入草酸时,所述加入的草酸水溶液中草酸的摩尔浓度为0.05-2mol/L。
(2)将步骤(1)所得的水溶液或混悬液加入水热釜中,升温后保温,经水热反应合成。
所述步骤(2)中的水热反应的填充比为60%-80%,水热反应时,水热釜升温至200-350℃,保温时间为0-96h。
将步骤(1)所得的水溶液或混悬液加入水热釜前还可以加入掺杂剂,超声分散;
所述的掺杂剂的加入量与钒离子的摩尔百分比为0%<M杂/Mv≤4%;
所述的掺杂剂可以是钨酸、钼酸、铌酸等不溶物中的一种,也可以是钨酸盐、钼酸盐、铌酸盐等可溶性盐中的一种,还可以是钨酸与可溶性钨酸盐的混合物,钼酸与可溶性钼酸盐的混合物或铌酸与可溶性铌酸盐的混合物中的一种;
所述的超声分散时间为5~15min。
(3)将步骤(2)中装有合成产物的水热釜拿出,先急速冷却,后自然冷至室温。
所述急速冷却的条件为在水浴冷却槽中,急速冷却的速度为一分钟内从保温温度降到50-80℃;
(4)将步骤(3)冷却后的产物经离心、洗涤、干燥,得到金红石相二氧化钒纳米线。
一种金红石相二氧化钒纳米线,为根据所述的金红石相二氧化钒纳米线的制备方法制得。
所制得的金红石相二氧化钒纳米线的直径为5nm≤Φ≤100nm,长度为1μm≤L≤50μm
所得的金红石相二氧化钒纳米线的半导体-导体相变温度为-30-70℃。
本发明的水热法制备金红石相二氧化钒纳米线,通过改变钒离子化合物及其浓度,控制反应温度及时间、填充比、掺杂剂加入量、冷却速度等条件得到结晶性好的金红石相二氧化钒纳米线,所制备的金红石相二氧化钒纳米线的长度和直径均有所不同。
本发明的制备方法与现有的传统制备方法相比,具有以下优点:
1、本发明的金红石相二氧化钒纳米线的制备方法制备工艺简单,不需要复杂设备,生产成本低,便于控制,产物结晶性好;
2、该制备方法的反应温度低,反应一步完成;
3、该方法所制得的金红石相二氧化钒纳米线的形貌可控。
本发明制得的金红石相二氧化钒纳米线可应用于智能窗户玻璃涂层、温控装置、光电开关、热敏电阻、光信息存储等领域。
附图说明
图1为实施例1所得的金红石相二氧化钒纳米线透射电镜照片
图2为实施例1所得的金红石相二氧化钒纳米线的高倍透射电镜照片
图3为实施例2所得的金红石相二氧化钒纳米线粉体的XRD图谱
图4为实施例2所得的金红石相二氧化钒纳米线DSC升温曲线
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
将3.64g五氧化二钒粉体分散于200g浓度为0.1M的草酸水溶液中,剧烈搅拌10分钟,称取一定量钼酸铵加入上述溶液,钼酸铵与钒离子的摩尔比为4∶100,得到摩尔浓度为0.2mol/L的钒离子水溶液,将上述溶液加入250ml水热釜中,填充比为80%,升温至200℃,保温96小时,经水热反应合成,然后将水热釜拿出,放入水浴冷却槽内,先快速冷却,使得冷却速度为1min.内降至60℃,然后自然冷至室温后,离心分离,用去离子水洗涤,在烘箱内70℃干燥24h,得到金红石相二氧化钒纳米线。
经检测,得到图1和图2,图1为该实施例所得的表面为柱状的金红石相二氧化钒纳米线的透射电镜照片;图2为该实施例所得的表面为柱状的金红石相二氧化钒纳米线的高倍透射电镜照片。
如图1和图2所示:图中可知,该方法所制得的金红石相二氧化钒纳米线为线形,并具有一定的长度和粗度;
经检测,所得的金红石相二氧化钒纳米线的直径为100nm,长度为40-50μm,其相变温度为-20℃。
实施例2
将4.5g草酸(2M)加入180ml浓度为0.005mol/L的二氯氧钒水溶液中,剧烈搅拌10分钟,称取一定量钨酸钠加入上述溶液,钨酸钠与钒离子的摩尔比为2∶100,得到摩尔浓度为0.005mol/L的钒离子水溶液,将上述溶液加入250ml水热釜中,填充比为72%,升温至280℃,保温0小时,经水热反应合成,然后将水热釜拿出,放入水浴冷却槽内,先快速冷却,使得冷却速度为1min.内降至60℃,然后自然冷至室温后,离心分离,用去离子水洗涤,在烘箱内70℃干燥24h,得到金红石相二氧化钒纳米线。
经检测得到图3,图3为该实施例所得的金红石相二氧化钒纳米线粉体的XRD图谱。
如图3所示:该金红石相二氧化钒纳米线粉体的XRD图谱表明该生成的粉体的晶相结构为二氧化钒金红石相结构。
经检测得到图4,图4该实施例所得的金红石相二氧化钒纳米线DSC升温曲线。
如图4所示:DSC曲线表明得到的金红石相二氧化钒纳米线的相变温度为26℃。
经检测,所得的金红石相二氧化钒纳米线的直径为5nm,长度为1-6μm。
实施例3
配制150ml摩尔浓度为0.1mol/L的草酸氧钒水溶液,剧烈搅拌10分钟,将上述溶液加入到250ml水热釜中,填充比为60%,升温至350℃,保温1小时,经水热反应合成,然后将水热釜拿出,放入水浴冷却槽内,先快速冷却,使得冷却速度为1min.内降至80℃,然后自然冷至室温后,离心分离,用去离子水洗涤,在烘箱内70℃干燥24h,得到金红石相二氧化钒纳米线。
经检测,所得的金红石相二氧化钒纳米线的直径为30nm,长度为10-20μm,其相变温度为70℃。
实施例4
将0.126g(0.005M)草酸加入到200ml摩尔浓度为0.05mol/L的偏钒酸钠水溶液中,剧烈搅拌10分钟,称取一定量的铌酸铵加入上述溶液,使得铌酸铵与钒离子的摩尔比为3∶100,得到摩尔浓度为0.015mol/L的钒离子水溶液,将上述溶液加入250ml水热釜中,填充比为80%,升温至300℃,保温20小时,经水热反应合成,然后将水热釜拿出,放入水浴冷却槽内,先快速冷却,使得冷却速度为1min.内降至60℃,然后自然冷至室温后,离心分离,用去离子水洗涤,在烘箱内70℃干燥24h,得到金红石相二氧化钒纳米线。
经检测,所得的金红石相二氧化钒纳米线的直径为50nm,长为15-25μm,其相变温度为-30℃。
实施例5
将0.8g草酸加入到150ml摩尔浓度为0.05mol/L的硫酸氧钒水溶液中,剧烈搅拌10分钟,称取一定量的钼酸与钼酸铵的混合物加入上述溶液,使得铌离子与钒离子的摩尔比为1∶100,得到摩尔浓度为0.03mol/L的钒离子水溶液,将上述溶液加入250ml水热釜中,,填充比为60%,升温至300℃,保温48小时,经水热反应合成,然后将水热釜拿出,放入水浴冷却槽内,先快速冷却,使得冷却速度为1min.内降至50℃,然后自然冷至室温后,离心分离,用去离子水洗涤,在烘箱内70℃干燥24h,得到金红石相二氧化钒纳米线。
经检测,所得的金红石相二氧化钒纳米线的直径为25nm,长度为5-10μm,其相变温度为55℃。
实施例6
将0.35g(0.2M)草酸加入到175ml摩尔浓度为0.015mol/L的硫酸氧钒水溶液中,剧烈搅拌10分钟,称取一定量的钼酸与钼酸铵的混合物加入上述溶液,使得铌离子与钒离子的摩尔比为1.5∶100,得到摩尔浓度为0.015mol/L的钒离子水溶液,将上述溶液加入250ml水热釜中,填充比为70%,升温至300℃,保温30小时,经水热反应合成,然后将水热釜拿出,放入水浴冷却槽内,先快速冷却,使得冷却速度为1min.内降至70℃,然后自然冷至室温后,离心分离,用去离子水洗涤,在烘箱内80℃干燥24h,得到金红石相二氧化钒纳米线。
经检测,所得的金红石相二氧化钒纳米线的直径为13nm,长度为15-28μm,其相变温度为16℃。
Claims (10)
1.一种金红石相二氧化钒纳米线的制备方法,包括如下步骤:
1)配制摩尔浓度为0.005-0.2mol/L的钒离子水溶液或混悬液;
2)将步骤1)所得的水溶液或混悬液加入水热釜中,升温后保温,经水热反应合成;
3)将步骤2)中装有合成产物的水热釜拿出,先急速冷却,后自然冷至室温;
4)将步骤3)冷却后的产物经离心、洗涤、干燥,得到金红石相二氧化钒纳米线。
2.如权利要求1所述的一种金红石相二氧化钒纳米线的制备方法,其特征在于:所述步骤4)中的急速冷却条件为在水浴冷却槽中,急速冷却的速度为一分钟内从保温温度降到50-80℃。
3.如权利要求1所述的一种金红石相二氧化钒纳米线的制备方法,其特征在于:所述步骤4)中的水热反应的填充比为60%-80%,水热反应时,水热釜升温至200-350℃,保温时间为0-96h。
4.如权利要求1所述的一种金红石相二氧化钒纳米线的制备方法,其特征在于:所述步骤1)中的钒离子为四价钒离子;所述四价钒离子的水溶液或混悬液为四价钒化合物与水混合或五价钒化合物与草酸在水中混合后获得。
5.如权利要求4所述的一种金红石相二氧化钒纳米线的制备方法,其特征在于:所述四价钒化合物选自硫酸氧钒、二氯氧钒或草酸氧钒;所述五价钒化合物选自五氧化二钒或偏钒酸钠。
6.如权利要求1-5任一所述的一种金红石相二氧化钒纳米线的制备方法,其特征在于:将步骤1)所得的水溶液或混悬液加入水热釜前加入掺杂剂,超声分散;掺杂剂的加入量与钒离子的摩尔百分比为0%<M杂/MV≤4%;所述掺杂剂选自钨酸、钼酸、铌酸、可溶性钨酸盐、可溶性钼酸盐和可溶性铌酸盐中的一种,或者,掺杂剂选自钨酸与可溶性钨酸盐的混合物、钼酸与可溶性钼酸盐的混合物或铌酸与可溶性铌酸盐的混合物中的一种。
7.一种金红石相二氧化钒纳米线,为根据权利要求1-6任一所述的金红石相二氧化钒纳米线的制备方法制得。
8.如权利要求7所述的一种金红石相二氧化钒纳米线,其特征在于:所述的金红石相二氧化钒纳米线,直径为5nm≤Φ≤100nm,长度为1μm≤L≤50μm
9.如权利要求7或8所述的一种金红石相二氧化钒纳米线,其特征在于:所述的金红石相二氧化钒纳米线的半导体-导体相转变温度为-30-70℃。
10.如权利要求7-9任一所述的一种金红石相二氧化钒纳米线在智能窗户玻璃涂层、温控装置、光电开关、热敏电阻、光信息存储中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101778214A CN101830510B (zh) | 2010-05-18 | 2010-05-18 | 金红石相二氧化钒纳米线的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101778214A CN101830510B (zh) | 2010-05-18 | 2010-05-18 | 金红石相二氧化钒纳米线的制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101830510A true CN101830510A (zh) | 2010-09-15 |
CN101830510B CN101830510B (zh) | 2012-10-31 |
Family
ID=42714756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101778214A Expired - Fee Related CN101830510B (zh) | 2010-05-18 | 2010-05-18 | 金红石相二氧化钒纳米线的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101830510B (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102464354A (zh) * | 2010-11-05 | 2012-05-23 | 中国科学院上海硅酸盐研究所 | 金红石相二氧化钒组合物、含有该组合物的涂层以及性能 |
CN102838164A (zh) * | 2012-09-27 | 2012-12-26 | 电子科技大学 | 一种金属离子改性的二氧化钒花状粉末材料的制备方法 |
CN103420420A (zh) * | 2013-07-13 | 2013-12-04 | 宿州学院 | 一种b相向a相转变的二氧化钒纳米棒的制备方法 |
CN103554997A (zh) * | 2013-10-16 | 2014-02-05 | 张家港环纳环保科技有限公司 | 碳包覆二氧化钒纳米颗粒及其制备方法 |
CN104153038A (zh) * | 2014-05-04 | 2014-11-19 | 常州大学 | 一种氧化钒掺杂纳米线静电纺丝的制备方法 |
CN104192904A (zh) * | 2014-08-29 | 2014-12-10 | 武汉科技大学 | 一种超长二氧化钒纳米线薄膜及其制备方法 |
JP2016166294A (ja) * | 2015-03-10 | 2016-09-15 | コニカミノルタ株式会社 | 酸化バナジウム含有粒子の製造方法及び酸化バナジウム含有粒子 |
WO2016158103A1 (ja) * | 2015-03-31 | 2016-10-06 | コニカミノルタ株式会社 | 二酸化バナジウム含有粒子の製造方法 |
CN106395901A (zh) * | 2016-10-20 | 2017-02-15 | 中国人民解放军国防科学技术大学 | 一种单斜相二氧化钒纳米线及其制备方法和应用 |
CN106892456A (zh) * | 2017-03-03 | 2017-06-27 | 西南大学 | 一种优化掺杂m相二氧化钒相变性能的方法 |
JP2017115008A (ja) * | 2015-12-24 | 2017-06-29 | コニカミノルタ株式会社 | 二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子分散液の製造方法 |
CN107764872A (zh) * | 2017-09-25 | 2018-03-06 | 天津大学 | 金修饰二氧化钒纳米线的二氧化氮气体传感器制备方法 |
CN108373171A (zh) * | 2018-05-30 | 2018-08-07 | 武汉理工大学 | 水热法制备二氧化钒的方法 |
CN110383422A (zh) * | 2017-03-07 | 2019-10-25 | 威斯康星州男校友研究基金会 | 基于二氧化钒的光学和射频开关 |
CN112174207A (zh) * | 2020-10-16 | 2021-01-05 | 成都先进金属材料产业技术研究院有限公司 | 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法 |
CN112209443A (zh) * | 2020-10-16 | 2021-01-12 | 成都先进金属材料产业技术研究院有限公司 | 单超声雾化微波法制备m相二氧化钒的方法 |
CN112239229A (zh) * | 2020-10-19 | 2021-01-19 | 成都先进金属材料产业技术研究院有限公司 | 超声雾化法制备球形vo2纳米粉体的方法及装置 |
CN112250112A (zh) * | 2020-10-21 | 2021-01-22 | 武汉理工大学 | 一种淬冷处理的热致变色二氧化钒薄膜制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101215005A (zh) * | 2008-01-14 | 2008-07-09 | 攀钢集团攀枝花钢铁研究院有限公司 | 利用钒渣生产五氧化二钒的方法 |
CN101391814A (zh) * | 2008-10-31 | 2009-03-25 | 中国科学院上海硅酸盐研究所 | 金红石相二氧化钒粉体的制备方法 |
-
2010
- 2010-05-18 CN CN2010101778214A patent/CN101830510B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101215005A (zh) * | 2008-01-14 | 2008-07-09 | 攀钢集团攀枝花钢铁研究院有限公司 | 利用钒渣生产五氧化二钒的方法 |
CN101391814A (zh) * | 2008-10-31 | 2009-03-25 | 中国科学院上海硅酸盐研究所 | 金红石相二氧化钒粉体的制备方法 |
Non-Patent Citations (1)
Title |
---|
《中国优秀硕士论文电子期刊网》 20100115 邓丽 纳米二氧化钒的制备及其形貌对性能的影响 第11-12、21、23-24页 7-10 , 2 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102464354A (zh) * | 2010-11-05 | 2012-05-23 | 中国科学院上海硅酸盐研究所 | 金红石相二氧化钒组合物、含有该组合物的涂层以及性能 |
CN102464354B (zh) * | 2010-11-05 | 2015-01-21 | 中国科学院上海硅酸盐研究所 | 金红石相二氧化钒组合物、含有该组合物的涂层以及性能 |
CN102838164A (zh) * | 2012-09-27 | 2012-12-26 | 电子科技大学 | 一种金属离子改性的二氧化钒花状粉末材料的制备方法 |
CN103420420A (zh) * | 2013-07-13 | 2013-12-04 | 宿州学院 | 一种b相向a相转变的二氧化钒纳米棒的制备方法 |
CN103420420B (zh) * | 2013-07-13 | 2016-03-09 | 宿州学院 | 一种b相向a相转变的二氧化钒纳米棒的制备方法 |
CN103554997A (zh) * | 2013-10-16 | 2014-02-05 | 张家港环纳环保科技有限公司 | 碳包覆二氧化钒纳米颗粒及其制备方法 |
CN104153038A (zh) * | 2014-05-04 | 2014-11-19 | 常州大学 | 一种氧化钒掺杂纳米线静电纺丝的制备方法 |
CN104192904A (zh) * | 2014-08-29 | 2014-12-10 | 武汉科技大学 | 一种超长二氧化钒纳米线薄膜及其制备方法 |
JP2016166294A (ja) * | 2015-03-10 | 2016-09-15 | コニカミノルタ株式会社 | 酸化バナジウム含有粒子の製造方法及び酸化バナジウム含有粒子 |
WO2016158103A1 (ja) * | 2015-03-31 | 2016-10-06 | コニカミノルタ株式会社 | 二酸化バナジウム含有粒子の製造方法 |
JPWO2016158103A1 (ja) * | 2015-03-31 | 2018-02-08 | コニカミノルタ株式会社 | 二酸化バナジウム含有粒子の製造方法 |
CN107406756A (zh) * | 2015-03-31 | 2017-11-28 | 柯尼卡美能达株式会社 | 含有二氧化钒的粒子的制造方法 |
JP2017115008A (ja) * | 2015-12-24 | 2017-06-29 | コニカミノルタ株式会社 | 二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子分散液の製造方法 |
CN106395901A (zh) * | 2016-10-20 | 2017-02-15 | 中国人民解放军国防科学技术大学 | 一种单斜相二氧化钒纳米线及其制备方法和应用 |
CN106892456A (zh) * | 2017-03-03 | 2017-06-27 | 西南大学 | 一种优化掺杂m相二氧化钒相变性能的方法 |
CN110383422A (zh) * | 2017-03-07 | 2019-10-25 | 威斯康星州男校友研究基金会 | 基于二氧化钒的光学和射频开关 |
CN110383422B (zh) * | 2017-03-07 | 2023-04-04 | 威斯康星州男校友研究基金会 | 基于二氧化钒的光学和射频开关 |
CN107764872A (zh) * | 2017-09-25 | 2018-03-06 | 天津大学 | 金修饰二氧化钒纳米线的二氧化氮气体传感器制备方法 |
CN108373171A (zh) * | 2018-05-30 | 2018-08-07 | 武汉理工大学 | 水热法制备二氧化钒的方法 |
CN112209443A (zh) * | 2020-10-16 | 2021-01-12 | 成都先进金属材料产业技术研究院有限公司 | 单超声雾化微波法制备m相二氧化钒的方法 |
CN112174207B (zh) * | 2020-10-16 | 2022-05-24 | 成都先进金属材料产业技术研究院有限公司 | 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法 |
CN112174207A (zh) * | 2020-10-16 | 2021-01-05 | 成都先进金属材料产业技术研究院有限公司 | 超声喷雾热解直接制备m相二氧化钒纳米粉体的方法 |
CN112239229A (zh) * | 2020-10-19 | 2021-01-19 | 成都先进金属材料产业技术研究院有限公司 | 超声雾化法制备球形vo2纳米粉体的方法及装置 |
CN112239229B (zh) * | 2020-10-19 | 2022-03-22 | 成都先进金属材料产业技术研究院股份有限公司 | 超声雾化法制备球形vo2纳米粉体的方法及装置 |
CN112250112A (zh) * | 2020-10-21 | 2021-01-22 | 武汉理工大学 | 一种淬冷处理的热致变色二氧化钒薄膜制备方法 |
CN112250112B (zh) * | 2020-10-21 | 2023-03-31 | 武汉理工大学 | 一种淬冷处理的热致变色二氧化钒薄膜制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101830510B (zh) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101830510B (zh) | 金红石相二氧化钒纳米线的制备方法及应用 | |
CN101391814B (zh) | 金红石相二氧化钒粉体的制备方法 | |
CN103395842B (zh) | 一种三氧化钨纳米阵列电致变色薄膜及其制备方法 | |
CN101700909A (zh) | 水热法制备具有智能节能性能的二氧化钒的方法 | |
CN105859151B (zh) | 一种喷涂法制备大面积多孔电致变色薄膜的方法 | |
CN102757094B (zh) | 一种稳态a相二氧化钒纳米棒的制备方法 | |
CN103880080A (zh) | 水热辅助均匀沉淀法制备二氧化钒粉体的方法 | |
CN101830511A (zh) | 金红石相二氧化钒空心球的制备方法及应用 | |
CN105481015B (zh) | 一种二氧化钒纳米粉体的制备方法及应用 | |
CN104310468B (zh) | 一种制备单分散二氧化钛(b)纳米粒子的方法 | |
CN102517639A (zh) | 带状碳包覆v2o3、vo2和vc核壳材料的制备方法 | |
CN106892573A (zh) | 一种环保型热致变色二氧化钒薄膜的制备方法 | |
CN106809877A (zh) | 一种d相二氧化钒的制备方法 | |
CN103922384A (zh) | 一种均匀沉淀-热处理相结合制备立方相Sm2O3 纳米晶的方法 | |
CN104176778A (zh) | 一种分级多孔钒氧化物微球及其制备方法和应用 | |
CN108946809A (zh) | 利用棉花牺牲模板法制备钨掺杂多孔二氧化钒粉体及薄膜的方法 | |
CN105669248A (zh) | 一种具有规则桁架网络结构的二氧化钒薄膜及其制备方法 | |
CN103241773A (zh) | 纳米钒氧化物及其制备方法 | |
CN104030676B (zh) | 钛酸锶钡纳米粉体的制备方法 | |
CN105669194B (zh) | 一种热致变红外发射率二氧化钒薄片的制备方法 | |
CN107651707A (zh) | 一种以酒石酸为还原剂的一步水热制备钼掺杂vo2(m)粉体的方法 | |
CN106517325B (zh) | 一种W与Eu共掺杂的二氧化钒薄膜及其制备方法 | |
CN101407328B (zh) | 一种制备锌铝氧化物纳米粉体的方法 | |
CN103700824B (zh) | 一种夹层状nh4v3o8纳米晶的制备方法 | |
CN102354605A (zh) | 微波辅助反应增压法低温制备掺杂型晶态二氧化钛光电极 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121031 |
|
CF01 | Termination of patent right due to non-payment of annual fee |