CN101791565A - TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof - Google Patents
TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof Download PDFInfo
- Publication number
- CN101791565A CN101791565A CN 201010135429 CN201010135429A CN101791565A CN 101791565 A CN101791565 A CN 101791565A CN 201010135429 CN201010135429 CN 201010135429 CN 201010135429 A CN201010135429 A CN 201010135429A CN 101791565 A CN101791565 A CN 101791565A
- Authority
- CN
- China
- Prior art keywords
- tio
- carbon nitride
- phase carbon
- graphite phase
- composite photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 43
- 239000002131 composite material Substances 0.000 title claims abstract description 40
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 16
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 54
- 239000002105 nanoparticle Substances 0.000 claims abstract description 20
- 239000010439 graphite Substances 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 14
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000001354 calcination Methods 0.000 claims abstract description 10
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 4
- 239000013078 crystal Substances 0.000 claims description 13
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 claims description 3
- 150000001912 cyanamides Chemical class 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000003570 air Substances 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 239000003054 catalyst Substances 0.000 abstract description 11
- 230000001699 photocatalysis Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 238000007146 photocatalysis Methods 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 2
- 230000004298 light response Effects 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 6
- 239000011258 core-shell material Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- -1 cyanamide compound Chemical class 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000009615 deamination Effects 0.000 description 2
- 238000006481 deamination reaction Methods 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法,该催化剂结构为:核为TiO2纳米粒子,壳为石墨相氮化碳层。制备方法包括以下步骤:a)通过水热反应制备表面密勒胺包覆的TiO2纳米粒子;b)水洗、分离、干燥后,经煅烧即得TiO2@石墨相氮化碳异质结复合光催化剂。该发明具有以下优点:方法简单,成本低,适合大规模工业化生产;该复合光催化具有良好的可见光响应活性及稳定性,可广泛应用于光催化、光电转换等领域。
The invention discloses a TiO 2 @graphite phase carbon nitride heterojunction composite photocatalyst and a preparation method thereof. The structure of the catalyst is: the core is a TiO 2 nano particle, and the shell is a graphite phase carbon nitride layer. The preparation method comprises the following steps: a) preparing TiO 2 nanoparticles coated with melamine on the surface by hydrothermal reaction; b) washing with water, separating and drying, and calcining to obtain the TiO 2 @graphite-phase carbon nitride heterojunction composite catalyst of light. The invention has the following advantages: the method is simple, the cost is low, and it is suitable for large-scale industrial production; the composite photocatalysis has good visible light response activity and stability, and can be widely used in the fields of photocatalysis, photoelectric conversion and the like.
Description
技术领域technical field
本发明涉及一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法,属于光催化领域。The invention relates to a TiO 2 @graphite phase carbon nitride heterojunction composite photocatalyst and a preparation method thereof, belonging to the field of photocatalysis.
背景技术Background technique
随着全球工业化进程的不断发展,环境污染和能源短缺问题日益严重,已成为全球共对面对的严峻挑战。太阳能辐射能量大,清洁无污染,取之不尽,用之不是国际社会公认的理想替代能源。自1972年Fujishima和Honda发现单晶TiO2电极光解水及Carey等成功地将TiO2用于光催化降解水中有机污染物以来,半导体光催化技术由于能将纯洁无污染而又取之不尽的太阳能的利用与环境保护相结合,迅速受到各国研究者的普遍关注。在过去的40年里,光催化技术通常采用的金属的氧化物或硫化物作为光催化剂,如TiO2、ZnO2等,其禁阻带宽通常较大,仅能利用太阳光辐照的紫外线部分,量子产率较低,阻碍了光催化技术的实际应用。最近,Wong和Domen等报道了一种新型无金属聚合物半导体光催化剂—石墨相氮化碳(g-C3N4)在可见光作用下光解水生成氢和氧(Wong Xinchen,Nature Mater.,2009,8:76-80)以来,石墨相氮化碳由于禁阻带宽较小(2.7eV),具有良好的可见光响应活性,氧化性较强,制备工艺简单,价格低廉,迅速成为光催化剂研究的新方向(Lyth,J.Phys.Chem.C,2009,113:20148-20151;Li,Langmuir,2009,25:10397-10401;Li,Langmuir,2010,26:3894-3901)。然而,Domen和Wong等在进一步深入研究石墨相氮化碳在可见光解水生成氧气时(Domen,J.Phys.Chem.C,2009,113:4940-4947),发现该催化剂在光生空穴的作用下,自身部分分解生成N2,从而造成光催化反应不稳定。因此,提高化学稳定性,避免氧化分解,是聚合物光催化剂-石墨相氮化碳走向实际应用的关键之一。With the continuous development of the global industrialization process, the problems of environmental pollution and energy shortage are becoming more and more serious, which have become severe challenges faced by the whole world. Solar energy is large, clean and non-polluting, inexhaustible, and it is not an ideal alternative energy recognized by the international community. Since Fujishima and Honda discovered single-crystal TiO 2 electrodes for photolysis of water in 1972 and Carey et al. successfully used TiO 2 for photocatalytic degradation of organic pollutants in water, semiconductor photocatalysis technology has been inexhaustible due to its ability to make pure and pollution-free The combination of the utilization of solar energy and environmental protection has quickly attracted the attention of researchers from all over the world. In the past 40 years, photocatalytic technology usually uses metal oxides or sulfides as photocatalysts, such as TiO 2 , ZnO 2 , etc., which usually have a large forbidden bandwidth and can only use the ultraviolet part irradiated by sunlight. , the quantum yield is low, which hinders the practical application of photocatalytic technology. Recently, Wong and Domen reported a new type of metal-free polymer semiconductor photocatalyst - graphitic carbon nitride (gC 3 N 4 ) to photolyze water to generate hydrogen and oxygen under the action of visible light (Wong Xinchen, Nature Mater., 2009 , 8:76-80), graphitic carbon nitride has a small forbidden bandwidth (2.7eV), has good visible light response activity, strong oxidation, simple preparation process, and low price, and has quickly become the focus of photocatalyst research. New directions (Lyth, J. Phys. Chem. C, 2009, 113:20148-20151; Li, Langmuir, 2009, 25:10397-10401; Li, Langmuir, 2010, 26:3894-3901). However, when Domen and Wong et al. further studied graphitic carbon nitride in the visible light splitting of water to generate oxygen (Domen, J. Phys. Chem. C, 2009, 113: 4940-4947), they found that the catalyst was in the photogenerated hole Under the action, part of itself decomposes to generate N 2 , which makes the photocatalytic reaction unstable. Therefore, improving chemical stability and avoiding oxidative decomposition is one of the keys to the practical application of polymer photocatalyst-graphite carbon nitride.
发明内容Contents of the invention
本发明的目的是针对上述石墨相氮化碳存在的不足,提供一种化学稳定性良好,可见光催化性能优良的新型石墨相氮化碳复合光催化剂及其制备方法。The purpose of the present invention is to provide a novel graphite phase carbon nitride composite photocatalyst with good chemical stability and excellent visible light catalytic performance and a preparation method thereof for the above-mentioned deficiencies in the graphite phase carbon nitride.
本发明的目的是通过如下方式实现的:一种TiO2@石墨相氮化碳异质结复合光催化剂,该复合光催化剂的结构为:核为TiO2纳米粒子,壳为石墨相氮化碳。The purpose of the present invention is achieved in the following way: a TiO 2 @ graphite phase carbon nitride heterojunction composite photocatalyst, the structure of the composite photocatalyst is: the core is TiO 2 nanoparticles, and the shell is graphite phase carbon nitride .
TiO2纳米粒子的晶型为锐钛矿或金红石或两者之混合物。The crystal form of TiO 2 nanoparticles is anatase or rutile or a mixture of both.
一种TiO2@石墨相氮化碳异质结复合光催化剂的制备方法,制备步骤如下:A method for preparing a TiO 2 @graphite phase carbon nitride heterojunction composite photocatalyst, the preparation steps are as follows:
a)将TiO2水溶胶及氰胺类化合物,经水热反应制备表面密勒胺包覆的TiO2纳米粒子;a) TiO 2 hydrosol and cyanamide compounds are prepared by hydrothermal reaction to prepare surface mellamine-coated TiO 2 nanoparticles;
b)对TiO2纳米粒子水洗、分离、干燥后,经煅烧即得TiO2@石墨相氮化碳异质结复合光催化剂。b) After washing, separating and drying the TiO 2 nanoparticles, they are calcined to obtain the TiO 2 @graphite-phase carbon nitride heterojunction composite photocatalyst.
所述氰胺类化合物是指氰胺、双聚氰胺或三聚氰胺之一种或几种之混合物。The cyanamide compound refers to one or a mixture of cyanamide, dicyandiamide or melamine.
水热反应条件为:反应温度100℃~400℃,反应时间0.5h~50h;反应条件可优选为:反应温度150℃~300℃,反应时间01h~10h。The hydrothermal reaction conditions are:
煅烧温度为300℃~1000℃,煅烧时间为0.5~10小时;优选为:400℃~800℃,煅烧时间为1~5小时。The calcination temperature is 300°C-1000°C, and the calcination time is 0.5-10 hours; preferably: 400°C-800°C, and the calcination time is 1-5 hours.
煅烧气氛可为空气、氮气或氩气之任一种。The calcining atmosphere can be any one of air, nitrogen or argon.
本发明具有如下的有益效果,(1)采用本发明的方法,可有效避免石墨相氮化碳自身分解,提高化学稳定性;(2)经以对氯苯酚为模拟物的对照光催化实验表明,本发明的复合光催化剂较纯的石墨相氮化碳具有更高的可见光催化活性,说明复合光催化剂有利于光生载流子的电荷分离,提高量子产率;(3)本发明的制备工艺简单,所采用的原料均为已工业化规模生产的化工原料且价格低廉,因此采用本发明的方法制备而成的复合光催化剂成本低,并适合大规模工业化生产。The present invention has the following beneficial effects: (1) adopting the method of the present invention can effectively avoid the self-decomposition of graphite phase carbon nitride and improve chemical stability; , the composite photocatalyst of the present invention has higher visible light catalytic activity than pure graphitic carbon nitride, indicating that the composite photocatalyst is conducive to the charge separation of photogenerated carriers and improves the quantum yield; (3) the preparation process of the present invention Simple, the raw materials used are chemical raw materials produced on an industrial scale and the price is low, so the composite photocatalyst prepared by the method of the present invention has low cost and is suitable for large-scale industrial production.
附图说明Description of drawings
图1是本发明TiO2@石墨相氮化碳异质结复合光催化剂结构示意图;Fig. 1 is a schematic structural diagram of the TiO 2 @ graphite phase carbon nitride heterojunction composite photocatalyst of the present invention;
图2是本发明TiO2@石墨相氮化碳异质结复合光催化剂的催化机理示意图;Fig. 2 is a schematic diagram of the catalytic mechanism of the TiO 2 @ graphite phase carbon nitride heterojunction composite photocatalyst of the present invention;
图3是本发明TiO2@石墨相氮化碳异质结复合光催化剂制备过程示意图;Fig. 3 is a schematic diagram of the preparation process of TiO 2 @ graphite phase carbon nitride heterojunction composite photocatalyst of the present invention;
图4是本发明实施例1的X射线衍射图Fig. 4 is the X-ray diffraction pattern of embodiment 1 of the present invention
图5是本发明实施例1的透射电镜图;Fig. 5 is the transmission electron microscope figure of embodiment 1 of the present invention;
图6是本发明实施例1的高分辨透射电镜图;Fig. 6 is the high-resolution transmission electron microscope figure of embodiment 1 of the present invention;
图7是本发明实施例2的X射线衍射图;Fig. 7 is the X-ray diffractogram of
图8是本发明实施例2的高分辨透射电镜图Fig. 8 is the high-resolution transmission electron microscope figure of
图9是本发明实施例2的紫外-可见漫反射光谱图;Fig. 9 is the ultraviolet-visible diffuse reflectance spectrogram of
图10是本发明实施例2的可见光催化降解4-氯苯酚实验;Fig. 10 is the visible light catalytic degradation experiment of 4-chlorophenol in Example 2 of the present invention;
图11本发明实施例的光催化活性稳定性实验。Figure 11 is the photocatalytic activity stability experiment of the embodiment of the present invention.
图12石墨相氮化碳的光催化活性稳定性实验。Figure 12 Photocatalytic activity stability experiment of graphitic carbon nitride.
具体实施方式Detailed ways
如图1所示,一种TiO2@石墨相氮化碳异质结复合光催化剂,该复合光催化剂的结构为:核为TiO2纳米粒子,壳为石墨相氮化碳。As shown in Figure 1, a TiO 2 @graphite phase carbon nitride heterojunction composite photocatalyst, the structure of the composite photocatalyst is: the core is TiO 2 nanoparticles, and the shell is graphite phase carbon nitride.
如图2所示,本发明的机理如下:在光辐照下,壳层石墨相氮化碳的(g-C3N4)产生光生电子,并将其注入到TiO2的导带,并与TiO2表面吸附的氧反应,生成超氧自由基活性种。随后,从TiO2的价带迁移一个电子到带正荷的石墨相氮化碳,并在TiO2的价带产生空穴,空穴再与吸附的水分子反应,产生氢氧自由基活性种。即石墨相氮化碳到光敏化剂的作用,从而避免其被光生空穴氧化,达到本发明的目的。As shown in Figure 2, the mechanism of the present invention is as follows: under light irradiation, the (gC 3 N 4 ) of the shell graphite phase carbon nitride produces photogenerated electrons, and injects them into the conduction band of TiO 2 , and combines with TiO 2 The oxygen adsorbed on the surface reacts to generate superoxide free radical active species. Subsequently, an electron is transferred from the valence band of TiO2 to the positively charged graphitic carbon nitride, and a hole is generated in the valence band of TiO2 , which then reacts with the adsorbed water molecules to generate active species of hydroxyl radicals . That is, the graphite phase carbon nitride acts on the photosensitizer, thereby preventing it from being oxidized by photogenerated holes, and achieving the purpose of the present invention.
如图3所示,一种TiO2@石墨相氮化碳异质结复合光催化剂制备原理:As shown in Figure 3, the preparation principle of a TiO 2 @graphite phase carbon nitride heterojunction composite photocatalyst:
由于三聚氰胺的氮原子带孤电子对,与带正电荷的TiO2纳米粒子存在静电作用力,被吸附到TiO2纳米粒子的表面,然后在高温高压条件下,三聚氰胺发生脱氨缩聚生成密勒胺,从而在TiO2纳米粒子的表面形成密勒胺包覆层。经水洗、分离、干燥后,TiO2纳米粒子的表面的密勒胺包覆层在高温下,进一步发生脱氨缩聚,形成石黑相氮化碳(g-C3N4)层,即得本发明所述TiO2@石墨相氮化碳异质结复合光催化剂。Because the nitrogen atom of melamine has a lone electron pair, there is an electrostatic force with the positively charged TiO 2 nanoparticles, and it is adsorbed to the surface of the TiO 2 nanoparticles. Then, under high temperature and high pressure conditions, melamine undergoes deamination and polycondensation to form melamine. , thus forming a melamine coating layer on the surface of TiO 2 nanoparticles. After water washing, separation and drying, the melamine coating layer on the surface of the TiO2 nanoparticles further undergoes deamination and polycondensation at high temperature to form a stone black phase carbon nitride ( gC3N4 ) layer, which obtains the present invention The TiO 2 @graphite phase carbon nitride heterojunction composite photocatalyst.
下面实施例是对本发明的进一步说明。The following examples are further illustrations of the present invention.
TiO2水溶胶可参照但并非必需按以下方法制备:TiO Hydrosol can be prepared according to the following method with reference to but not necessarily:
剧烈搅拌下,将10mlTiCl4加入200ml冰水中,约30Min后,升至室温,继续搅拌2h,然后经透析膜透析至PH值约为5,即可制得TiO2水溶胶。Under vigorous stirring, add 10ml TiCl4 into 200ml ice water, after about 30min, raise to room temperature, continue to stir for 2h, and then dialyze through the dialysis membrane until the pH value is about 5, then the TiO 2 hydrosol can be prepared.
实施例1:Example 1:
将0.56g三聚氰胺加入到70mlTiO2溶胶,经搅拌溶解后,超声10Min,然后装入100水热反应釜,180℃保温6h,然后自然冷却至室温后,离心分离并用蒸馏水洗涤5次,80℃真空干燥12h,然后在550℃热处理4h,即制得TiO2@石墨相氮化碳异质结复合光催化剂。X射线衍射测试表明,如图4所示:TiO2晶形为锐钛矿,根据谢乐氏公式计算,其晶粒约5nm,氮化碳为石墨相。高分辨透射电子显微镜结果显示,如图6所示:催化剂为核壳结构,核为TiO2纳米粒子,粒径约5nm,壳为氮化碳,厚约2nm。Add 0.56g of melamine to 70ml of TiO 2 sol, stir and dissolve it, sonicate for 10Min, then put it into a 100°C hydrothermal reaction kettle, keep it warm at 180°C for 6h, then cool it down to room temperature naturally, centrifuge and wash it with distilled water for 5 times, vacuum it at 80°C Drying for 12 hours, and then heat-treating at 550° C. for 4 hours, the TiO 2 @graphite-phase carbon nitride heterojunction composite photocatalyst was prepared. X-ray diffraction test shows that, as shown in Figure 4: TiO 2 crystal form is anatase, according to Scherrer's formula calculation, its crystal grain is about 5nm, carbon nitride is graphite phase. The results of high-resolution transmission electron microscopy show that, as shown in Figure 6: the catalyst has a core-shell structure, the core is TiO 2 nanoparticles with a particle size of about 5nm, and the shell is carbon nitride with a thickness of about 2nm.
实施例2:Example 2:
将0.56g三聚氰胺加入到70mlTiO2溶胶,经搅拌溶解后,超声10Min,然后装入100水热反应釜,200℃保温6h,然后自然冷却至室温后,离心分离并用蒸馏水洗涤5次,80℃真空干燥12h,然后在550℃热处理4h,即制得TiO2@石墨相氮化碳异质结复合光催化剂。X射线衍射测试表明,如图7所示:TiO2晶形为锐钛矿,根据谢乐氏公式计算,其晶粒约6.2nm,氮化碳为石墨相。高分辨透射电子显微镜结果显示,如图8所示:催化剂为核壳结构,核为TiO2纳米粒子,粒径约6nm,壳为氮化碳,厚约2nm。紫外-可见漫反射光谱(图9)表明复合光催化剂对可见光具有良好的吸收性能,吸收边带约为485nm;以4-氯苯酚为模拟污染物的催化降解实验表明(图10),该复合光催化剂具有良好的可见光催化活性,光照60Min即可将4-氯苯酚降解80%。Add 0.56g melamine to 70ml TiO 2 sol, stir and dissolve, ultrasonicate for 10Min, then put it into a 100°C hydrothermal reaction kettle, keep it at 200°C for 6h, then cool it down to room temperature naturally, centrifuge and wash it with distilled water for 5 times, vacuum it at 80°C Drying for 12 hours, and then heat-treating at 550° C. for 4 hours, the TiO 2 @graphite-phase carbon nitride heterojunction composite photocatalyst was prepared. X-ray diffraction test shows that, as shown in Figure 7: TiO 2 crystal form is anatase, calculated according to Scherrer's formula, its crystal grain is about 6.2nm, carbon nitride is graphite phase. The results of high-resolution transmission electron microscopy show that, as shown in Figure 8: the catalyst has a core-shell structure, the core is TiO 2 nanoparticles with a particle size of about 6nm, and the shell is carbon nitride with a thickness of about 2nm. The ultraviolet-visible diffuse reflectance spectrum (Figure 9) shows that the composite photocatalyst has good absorption performance for visible light, and the absorption sideband is about 485nm; the catalytic degradation experiment with 4-chlorophenol as the simulated pollutant shows (Figure 10), the composite The photocatalyst has good visible light catalytic activity, and 80% of 4-chlorophenol can be degraded by light irradiation for 60 minutes.
实施例3:Example 3:
将0.84g三聚氰胺加入到70mlTiO2溶胶,经搅拌溶解后,超声10Min,然后装入100水热反应釜,200℃保温6h,然后自然冷却至室温后,离心分离并用蒸馏水洗涤5次,80℃真空干燥12h,然后在550℃热处理4h,即制得TiO2@石墨相氮化碳异质结复合光催化剂。X射线衍射测试表明:TiO2晶形为锐钛矿,根据谢乐氏公式计算,其晶粒约5.2nm,氮化碳为石墨相。高分辨透射电子显微镜结果显示:催化剂为核壳结构,核为TiO2纳米粒子,粒径约5nm,壳为氮化碳,厚约2nm。Add 0.84g of melamine to 70ml of TiO 2 sol, stir and dissolve, sonicate for 10Min, then put it into a 100°C hydrothermal reaction kettle, keep it warm at 200°C for 6h, then cool it down to room temperature naturally, centrifuge and wash it with distilled water for 5 times, vacuum at 80°C Drying for 12 hours, and then heat-treating at 550° C. for 4 hours, the TiO 2 @graphite-phase carbon nitride heterojunction composite photocatalyst was prepared. The X-ray diffraction test shows that the crystal form of TiO 2 is anatase. According to Scherrer's formula, the crystal grain is about 5.2nm, and the carbon nitride is graphite phase. The results of high-resolution transmission electron microscopy show that the catalyst has a core-shell structure, the core is TiO 2 nanoparticles with a particle size of about 5nm, and the shell is carbon nitride with a thickness of about 2nm.
实施例4:Example 4:
将1.4g三聚氰胺加入到70mlTiO2溶胶,经搅拌溶解后,超声10Min,然后装入100水热反应釜,200℃保温6h,然后自然冷却至室温后,离心分离并用蒸馏水洗涤5次,80℃真空干燥12h,然后在520℃热处理4h,即制得TiO2@石墨相氮化碳异质结复合光催化剂。X射线衍射测试表明:TiO2晶形为锐钛矿,根据谢乐氏公式计算,其晶粒约5nm,氮化碳为石墨相。高分辨透射电子显微镜结果显示:催化剂为核壳结构,核为TiO2纳米粒子,粒径约5nm,壳为氮化碳,厚约2nm。Add 1.4g melamine to 70ml TiO 2 sol, stir and dissolve, ultrasonicate for 10Min, then put it into a 100°C hydrothermal reaction kettle, keep it at 200°C for 6h, then cool to room temperature naturally, centrifuge and wash with distilled water for 5 times, vacuum at 80°C Drying for 12 hours, and then heat-treating at 520° C. for 4 hours, the TiO 2 @graphite-phase carbon nitride heterojunction composite photocatalyst was prepared. The X-ray diffraction test shows that the crystal form of TiO 2 is anatase. According to Scherrer's formula, the crystal grain is about 5nm, and the carbon nitride is graphite phase. The results of high-resolution transmission electron microscopy show that the catalyst has a core-shell structure, the core is TiO 2 nanoparticles with a particle size of about 5nm, and the shell is carbon nitride with a thickness of about 2nm.
实施例5:Example 5:
将2.8g三聚氰胺加入到70mlTiO2溶胶,经搅拌溶解后,超声10Min,然后装入100水热反应釜,220℃保温6h,然后自然冷却至室温后,离心分离并用蒸馏水洗涤5次,80℃真空干燥12h,然后在530℃热处理4h,即制得TiO2@石墨相氮化碳异质结复合光催化剂。X射线衍射测试表明:TiO2晶形为锐钛矿,根据谢乐氏公式计算,其晶粒约4.8nm,氮化碳为石墨相。高分辨透射电子显微镜结果显示:催化剂为核壳结构,核为TiO2纳米粒子,粒径约5nm,壳为氮化碳,厚约3nm。Add 2.8g of melamine to 70ml of TiO 2 sol, stir and dissolve, ultrasonicate for 10Min, then put it into a 100°C hydrothermal reaction kettle, keep it at 220°C for 6h, then cool it down to room temperature naturally, centrifuge and wash it with distilled water for 5 times, vacuum at 80°C Drying for 12 hours, and then heat-treating at 530° C. for 4 hours, the TiO 2 @graphite-phase carbon nitride heterojunction composite photocatalyst was prepared. The X-ray diffraction test shows that the crystal form of TiO 2 is anatase. According to Scherrer's formula, the crystal grain is about 4.8nm, and the carbon nitride is graphite phase. The results of high-resolution transmission electron microscopy show that the catalyst has a core-shell structure, the core is TiO 2 nanoparticles with a particle size of about 5nm, and the shell is carbon nitride with a thickness of about 3nm.
催化剂活性稳定性实验:Catalyst activity stability test:
参照文献(Li,Langmuir,2009,25:10397-10401),将5g三聚氰胺在550℃热处理4h,制备纯石墨相氮化碳光催化剂。Referring to the literature (Li, Langmuir, 2009, 25: 10397-10401), 5 g of melamine was heat-treated at 550 ° C for 4 h to prepare a pure graphite phase carbon nitride photocatalyst.
分别准确称取100mg纯石墨相氮化碳及实施例2所制备的复合催化剂,加入至200ml 0.3×10-4M的4-氯苯酚水溶液中,超声5Min,避光搅拌1h后,采用300W氙灯为模拟光源,滤除420nm波长以下光,间隔一定时间后取样,以甲醇/去离子水(40∶60)为流动相,流速1ml/Min,采用高效液相色谱测定溶液中残留4-氯苯酚浓度。Accurately weigh 100mg of pure graphite phase carbon nitride and the composite catalyst prepared in Example 2 respectively, add them to 200ml of 0.3×10 -4 M 4-chlorophenol aqueous solution, ultrasonicate for 5min, and stir for 1h in the dark, then use a 300W xenon lamp As a simulated light source, filter out light below 420nm wavelength, take samples after a certain time interval, use methanol/deionized water (40:60) as mobile phase, flow rate 1ml/Min, use high performance liquid chromatography to determine the residual 4-chlorophenol in the solution concentration.
然后将光催化剂离心回收,80℃干燥6小时。按以上操作,重复使用4次,进行催化剂活性稳定性实验,如图11,12所示。从图可见:本发明所制备的复合光催化剂在可见光辐照下,60Min即可降解约80%的4-氯苯酚,而相同条件下,纯石墨相氮化碳只能降解约35%。此外,随光催化剂使用次数的增加,纯石墨相氮化碳催化活性逐渐下降,重复使用4次后,在可见光辐照60Min仅能降解约25%的4-氯苯酚,而相同条件下,复合光催化剂仍可保持约80%的降解率。结果表明,本发明所制备的复合光催化剂不仅具有良好的可见光催化活性,同时也具有良好的稳定性。Then the photocatalyst was recovered by centrifugation and dried at 80°C for 6 hours. According to the above operation, it was used repeatedly 4 times, and the catalyst activity stability experiment was carried out, as shown in Figures 11 and 12. It can be seen from the figure that the composite photocatalyst prepared by the present invention can degrade about 80% of 4-chlorophenol in 60 Min under visible light irradiation, while under the same conditions, pure graphite phase carbon nitride can only degrade about 35%. In addition, with the increase of photocatalyst use times, the catalytic activity of pure graphitic carbon nitride gradually decreased. After repeated use for 4 times, only about 25% of 4-chlorophenol could be degraded under visible light irradiation for 60Min, while under the same conditions, the composite The photocatalyst can still maintain a degradation rate of about 80%. The results show that the composite photocatalyst prepared by the invention not only has good visible light catalytic activity, but also has good stability.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101354293A CN101791565B (en) | 2010-03-30 | 2010-03-30 | A TiO2@Graphite Phase Carbon Nitride Heterojunction Composite Photocatalyst and Its Preparation Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101354293A CN101791565B (en) | 2010-03-30 | 2010-03-30 | A TiO2@Graphite Phase Carbon Nitride Heterojunction Composite Photocatalyst and Its Preparation Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101791565A true CN101791565A (en) | 2010-08-04 |
CN101791565B CN101791565B (en) | 2012-04-25 |
Family
ID=42584610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101354293A Expired - Fee Related CN101791565B (en) | 2010-03-30 | 2010-03-30 | A TiO2@Graphite Phase Carbon Nitride Heterojunction Composite Photocatalyst and Its Preparation Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101791565B (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102125863A (en) * | 2011-01-27 | 2011-07-20 | 湘潭大学 | Preparation method of graphite phase carbon nitride/rutile monocrystal titanium dioxide (TiO2) nanowire array |
CN102698784A (en) * | 2012-06-13 | 2012-10-03 | 浙江师范大学 | Visible light response catalyst and preparation method thereof |
CN102950016A (en) * | 2012-10-29 | 2013-03-06 | 华东理工大学 | A kind of preparation method of ZnO/g-C3N4 composite photocatalyst |
CN102962088A (en) * | 2012-11-06 | 2013-03-13 | 中国科学院广州地球化学研究所 | Composite visible light catalyst of TiO2 microspheres and g-C3N4 and its preparation method and application |
CN102974377A (en) * | 2012-09-27 | 2013-03-20 | 清华大学 | Carbon-nitrogen alkene photocatalyst and preparation method thereof |
CN103041772A (en) * | 2012-11-22 | 2013-04-17 | 湘潭大学 | One-dimensional zinc oxide/graphitized carbon core-shell structure hetero-junction and preparation method thereof |
CN103143380A (en) * | 2013-03-21 | 2013-06-12 | 哈尔滨工业大学 | Solvent evaporation method for preparing graphite phase carbon nitride/{001} surface exposed anatase phase titanium dioxide nano composite material |
CN104043471A (en) * | 2014-07-02 | 2014-09-17 | 东华大学 | A kind of preparation method of graphene/Ta3N5 composite photocatalyst |
CN104549403A (en) * | 2014-11-28 | 2015-04-29 | 阜阳师范学院 | A kind of composite photocatalyst DyVO4/g-C3N4 and its preparation method |
CN104646046A (en) * | 2015-03-11 | 2015-05-27 | 湖南大学 | Novel method for selective oxidation of cyclohexene |
CN104722324A (en) * | 2015-04-02 | 2015-06-24 | 南昌航空大学 | Three-step method for preparing Ag-g-C3N4/TiO2 ternary compound |
CN104801328A (en) * | 2015-04-21 | 2015-07-29 | 河北科技大学 | A method for preparing TiO2/g-C3N4 composite photocatalyst at low temperature |
CN105056981A (en) * | 2015-07-16 | 2015-11-18 | 南昌航空大学 | Preparation and application of composite photocatalyst g-C3N4-bismuth ferrite for efficient removal of refractory organic pollutants |
CN106732712A (en) * | 2016-11-11 | 2017-05-31 | 天津大学 | The synthetic method of the graphite phase carbon nitride homotype heterojunction photocatalysis material with multi-level structure and application |
CN106914264A (en) * | 2014-11-06 | 2017-07-04 | 江苏理工学院 | Preparation method of composite visible light catalyst |
CN107213912A (en) * | 2017-06-16 | 2017-09-29 | 益阳医学高等专科学校 | A kind of composite nano materials and its preparation method and application |
CN107326394A (en) * | 2017-06-09 | 2017-11-07 | 常州大学 | It is a kind of to prepare the method with core shell structure carbonitride modified titanic oxide light anode |
CN107413364A (en) * | 2017-05-03 | 2017-12-01 | 中国科学院东北地理与农业生态研究所 | A kind of preparation method and applications of hollow mesoporous titanium dioxide of core-shell structure coated graphite phase carbon nitride composite photo-catalyst |
CN107456987A (en) * | 2017-08-06 | 2017-12-12 | 武汉轻工大学 | The method that electrostatic spinning one-step method prepares carbonitride/titanium dioxide heterogeneous knot photochemical catalyst |
CN108380234A (en) * | 2018-03-07 | 2018-08-10 | 苏州宝澜环保科技有限公司 | A kind of carbon-based semiconductors composite material and preparation method |
CN109626422A (en) * | 2018-12-11 | 2019-04-16 | 辽宁大学 | A kind of TiO2/g-C3N4The preparation method and applications of light anode nanocomposite |
CN109713153A (en) * | 2018-11-21 | 2019-05-03 | 云谷(固安)科技有限公司 | Organic Light Emitting Diode unit, display panel and preparation method thereof |
CN110368893A (en) * | 2019-08-22 | 2019-10-25 | 扬州大学 | Graphite phase carbon nitride composite material and preparation method and purposes |
CN110639583A (en) * | 2019-09-05 | 2020-01-03 | 中南民族大学 | Preparation method of high-activity and high-stability catalyst for Fischer-Tropsch synthesis reaction |
CN111994992A (en) * | 2020-07-16 | 2020-11-27 | 广东工业大学 | Method for killing red tide algae by using supported composite photocatalyst |
CN112264075A (en) * | 2020-11-09 | 2021-01-26 | 华侨大学 | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof |
CN112993231A (en) * | 2019-12-12 | 2021-06-18 | 中国科学院大连化学物理研究所 | Carbon-sulfur composite electrode and preparation and application thereof |
CN113582324A (en) * | 2021-08-11 | 2021-11-02 | 哈尔滨工业大学 | Method for removing organic pollutants in water by using sunlight |
CN115260682A (en) * | 2022-07-25 | 2022-11-01 | 山东农业大学 | A kind of preparation method of recyclable and regenerated photocatalytic fresh-keeping film |
CN116920912A (en) * | 2023-07-27 | 2023-10-24 | 华北科技学院(中国煤矿安全技术培训中心) | Preparation method of graphite phase carbon nitride/titanium dioxide composite photocatalyst |
-
2010
- 2010-03-30 CN CN2010101354293A patent/CN101791565B/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
《吉林大学学报(理学版)》 20090930 李雪飞等 石墨相氮化碳的制备及表征 1057-1060 1-7 第47卷, 第5期 2 * |
《工业催化》 20081030 江跟锋等 类石墨结构碳氮材料的制备及其在有机化工催化中的应用 14-20 1-7 第16卷, 第10期 2 * |
《现代化工》 20060228 彭峰等 非金属掺杂的第二代二氧化钛光催化剂研究进展 18-22 1-7 第26卷, 第2期 2 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102125863A (en) * | 2011-01-27 | 2011-07-20 | 湘潭大学 | Preparation method of graphite phase carbon nitride/rutile monocrystal titanium dioxide (TiO2) nanowire array |
CN102698784B (en) * | 2012-06-13 | 2014-07-23 | 浙江师范大学 | Visible light response catalyst and preparation method thereof |
CN102698784A (en) * | 2012-06-13 | 2012-10-03 | 浙江师范大学 | Visible light response catalyst and preparation method thereof |
CN102974377A (en) * | 2012-09-27 | 2013-03-20 | 清华大学 | Carbon-nitrogen alkene photocatalyst and preparation method thereof |
CN102974377B (en) * | 2012-09-27 | 2014-11-26 | 清华大学 | Carbon-nitrogen alkene photocatalyst and preparation method thereof |
CN102950016A (en) * | 2012-10-29 | 2013-03-06 | 华东理工大学 | A kind of preparation method of ZnO/g-C3N4 composite photocatalyst |
CN102950016B (en) * | 2012-10-29 | 2014-04-09 | 华东理工大学 | A kind of preparation method of ZnO/g-C3N4 composite photocatalyst |
CN102962088A (en) * | 2012-11-06 | 2013-03-13 | 中国科学院广州地球化学研究所 | Composite visible light catalyst of TiO2 microspheres and g-C3N4 and its preparation method and application |
CN103041772A (en) * | 2012-11-22 | 2013-04-17 | 湘潭大学 | One-dimensional zinc oxide/graphitized carbon core-shell structure hetero-junction and preparation method thereof |
CN103143380A (en) * | 2013-03-21 | 2013-06-12 | 哈尔滨工业大学 | Solvent evaporation method for preparing graphite phase carbon nitride/{001} surface exposed anatase phase titanium dioxide nano composite material |
CN104043471A (en) * | 2014-07-02 | 2014-09-17 | 东华大学 | A kind of preparation method of graphene/Ta3N5 composite photocatalyst |
CN106914264A (en) * | 2014-11-06 | 2017-07-04 | 江苏理工学院 | Preparation method of composite visible light catalyst |
CN106914264B (en) * | 2014-11-06 | 2019-08-27 | 江苏理工学院 | Preparation method of composite visible light catalyst |
CN104549403A (en) * | 2014-11-28 | 2015-04-29 | 阜阳师范学院 | A kind of composite photocatalyst DyVO4/g-C3N4 and its preparation method |
CN104646046B (en) * | 2015-03-11 | 2017-08-01 | 湖南大学 | A kind of method of selective oxidation cyclohexane |
CN104646046A (en) * | 2015-03-11 | 2015-05-27 | 湖南大学 | Novel method for selective oxidation of cyclohexene |
CN104722324A (en) * | 2015-04-02 | 2015-06-24 | 南昌航空大学 | Three-step method for preparing Ag-g-C3N4/TiO2 ternary compound |
CN104801328A (en) * | 2015-04-21 | 2015-07-29 | 河北科技大学 | A method for preparing TiO2/g-C3N4 composite photocatalyst at low temperature |
CN105056981A (en) * | 2015-07-16 | 2015-11-18 | 南昌航空大学 | Preparation and application of composite photocatalyst g-C3N4-bismuth ferrite for efficient removal of refractory organic pollutants |
CN106732712A (en) * | 2016-11-11 | 2017-05-31 | 天津大学 | The synthetic method of the graphite phase carbon nitride homotype heterojunction photocatalysis material with multi-level structure and application |
CN107413364B (en) * | 2017-05-03 | 2021-02-12 | 中国科学院东北地理与农业生态研究所 | Preparation method and application of titanium dioxide-coated graphite-phase carbon nitride composite photocatalyst with hollow mesoporous core-shell structure |
CN107413364A (en) * | 2017-05-03 | 2017-12-01 | 中国科学院东北地理与农业生态研究所 | A kind of preparation method and applications of hollow mesoporous titanium dioxide of core-shell structure coated graphite phase carbon nitride composite photo-catalyst |
CN107326394A (en) * | 2017-06-09 | 2017-11-07 | 常州大学 | It is a kind of to prepare the method with core shell structure carbonitride modified titanic oxide light anode |
CN107326394B (en) * | 2017-06-09 | 2019-10-11 | 常州大学 | A method for preparing carbon nitride modified titanium dioxide photoanode with core-shell structure |
CN107213912B (en) * | 2017-06-16 | 2020-05-19 | 益阳医学高等专科学校 | Composite nano material and preparation method and application thereof |
CN107213912A (en) * | 2017-06-16 | 2017-09-29 | 益阳医学高等专科学校 | A kind of composite nano materials and its preparation method and application |
CN107456987A (en) * | 2017-08-06 | 2017-12-12 | 武汉轻工大学 | The method that electrostatic spinning one-step method prepares carbonitride/titanium dioxide heterogeneous knot photochemical catalyst |
CN107456987B (en) * | 2017-08-06 | 2020-01-10 | 武汉轻工大学 | Method for preparing carbon nitride/titanium dioxide heterojunction photocatalyst by electrostatic spinning one-step method |
CN108380234A (en) * | 2018-03-07 | 2018-08-10 | 苏州宝澜环保科技有限公司 | A kind of carbon-based semiconductors composite material and preparation method |
CN109713153A (en) * | 2018-11-21 | 2019-05-03 | 云谷(固安)科技有限公司 | Organic Light Emitting Diode unit, display panel and preparation method thereof |
CN109626422A (en) * | 2018-12-11 | 2019-04-16 | 辽宁大学 | A kind of TiO2/g-C3N4The preparation method and applications of light anode nanocomposite |
CN110368893A (en) * | 2019-08-22 | 2019-10-25 | 扬州大学 | Graphite phase carbon nitride composite material and preparation method and purposes |
CN110368893B (en) * | 2019-08-22 | 2022-11-08 | 扬州大学 | Graphite phase carbon nitride composite material and preparation method and application thereof |
CN110639583A (en) * | 2019-09-05 | 2020-01-03 | 中南民族大学 | Preparation method of high-activity and high-stability catalyst for Fischer-Tropsch synthesis reaction |
CN112993231A (en) * | 2019-12-12 | 2021-06-18 | 中国科学院大连化学物理研究所 | Carbon-sulfur composite electrode and preparation and application thereof |
CN111994992A (en) * | 2020-07-16 | 2020-11-27 | 广东工业大学 | Method for killing red tide algae by using supported composite photocatalyst |
CN112264075A (en) * | 2020-11-09 | 2021-01-26 | 华侨大学 | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof |
CN112264075B (en) * | 2020-11-09 | 2022-08-26 | 华侨大学 | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof |
CN113582324A (en) * | 2021-08-11 | 2021-11-02 | 哈尔滨工业大学 | Method for removing organic pollutants in water by using sunlight |
CN115260682A (en) * | 2022-07-25 | 2022-11-01 | 山东农业大学 | A kind of preparation method of recyclable and regenerated photocatalytic fresh-keeping film |
CN115260682B (en) * | 2022-07-25 | 2024-02-06 | 山东农业大学 | Preparation method of recyclable and renewable photocatalytic preservative film |
CN116920912A (en) * | 2023-07-27 | 2023-10-24 | 华北科技学院(中国煤矿安全技术培训中心) | Preparation method of graphite phase carbon nitride/titanium dioxide composite photocatalyst |
Also Published As
Publication number | Publication date |
---|---|
CN101791565B (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101791565A (en) | TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof | |
Jiang et al. | Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production | |
CN105214656B (en) | Gold nano cluster golden nanometer particle titanium dioxide composite photocatalyst and application | |
CN101792117B (en) | Method for preparing tungsten-doped anatase type nano titanium dioxide composite powder | |
CN112521618B (en) | A kind of bismuth-based metal organic framework material, preparation method and application thereof | |
CN102500388B (en) | Copper and bismuth co-doped nano titanium dioxide photocatalyst and preparation and application thereof | |
CN110152711B (en) | CeO (CeO)2@MoS2/g-C3N4Ternary composite photocatalyst and preparation method thereof | |
CN107126944B (en) | A kind of more doping titanium dioxide nano particles of more defects with high visible light catalytic activity and preparation method | |
CN101347724B (en) | A kind of carbon 60/titanium dioxide nanocomposite photocatalyst and its preparation method and application | |
CN105195131B (en) | A kind of preparation method of graphene quantum dot/vanadium doping mesoporous TiO 2 composite photo-catalyst | |
CN103611531A (en) | Preparation method and application of silver oxide/titanium dioxide composite nanofiber photocatalyst | |
CN105709793B (en) | Niobium pentoxide nano stick/nitrogen-doped graphene composite photo-catalyst, preparation method and application of cadmium sulfide nano-particles modification | |
CN103990485A (en) | Carbon nitride nano particle modified pucherite composite photocatalyst and preparation method thereof | |
CN105664929B (en) | A kind of nanometer sheet and preparation method thereof containing noble metal | |
CN103331159A (en) | A kind of Cu2O-TiO2/reduced graphene ternary compound and its preparation method and application | |
CN104941615A (en) | A kind of preparation method of Ag/AgCl/TiO2 nanotube | |
Bai et al. | Synthesis and photocatalytic properties of palladium-loaded three dimensional flower-like anatase TiO2 with dominant {0 0 1} facets | |
Fang et al. | Cu2O decorated carbon-incorporated TiO2 microspheres with enhanced visible light photocatalytic activity | |
CN103212409B (en) | A porous carbon material loaded mesoporous TiO2-Ag composite and its preparation process | |
CN103272622A (en) | Preparation method of silver phosphate photocatalyst | |
Zhang et al. | Improving photocatalytic hydrogen evolution over CuO/Al2O3 by platinum-depositing and CuS-loading | |
CN103878001A (en) | A kind of preparation method and application of fluorine boron co-doped TiO2 nanosheet | |
CN102580727B (en) | Preparation method of active carbon loaded titanium dioxide silver-doped photochemical catalyst | |
CN108525651B (en) | Preparation method of reduced titanium dioxide with high photocatalytic activity | |
CN108479812B (en) | A kind of preparation method and application of AgInS2/Bi2WO6 heterojunction nanosheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120425 Termination date: 20180330 |
|
CF01 | Termination of patent right due to non-payment of annual fee |