CN101734712A - Method for preparing high-quality copper indium sulfide by employing single-source molecular precursor - Google Patents
Method for preparing high-quality copper indium sulfide by employing single-source molecular precursor Download PDFInfo
- Publication number
- CN101734712A CN101734712A CN200910264166A CN200910264166A CN101734712A CN 101734712 A CN101734712 A CN 101734712A CN 200910264166 A CN200910264166 A CN 200910264166A CN 200910264166 A CN200910264166 A CN 200910264166A CN 101734712 A CN101734712 A CN 101734712A
- Authority
- CN
- China
- Prior art keywords
- indium
- powder
- molecular precursor
- source molecular
- sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000002243 precursor Substances 0.000 title claims abstract description 25
- LCUOIYYHNRBAFS-UHFFFAOYSA-N copper;sulfanylideneindium Chemical compound [Cu].[In]=S LCUOIYYHNRBAFS-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims abstract description 13
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 229950004394 ditiocarb Drugs 0.000 claims abstract description 8
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- IOEJYZSZYUROLN-UHFFFAOYSA-M Sodium diethyldithiocarbamate Chemical compound [Na+].CCN(CC)C([S-])=S IOEJYZSZYUROLN-UHFFFAOYSA-M 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 206010013786 Dry skin Diseases 0.000 claims 2
- 229960003280 cupric chloride Drugs 0.000 claims 2
- 238000001035 drying Methods 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 229960004756 ethanol Drugs 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000000047 product Substances 0.000 abstract description 25
- 239000012071 phase Substances 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 19
- 241000257465 Echinoidea Species 0.000 abstract description 11
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 abstract description 11
- 239000002244 precipitate Substances 0.000 abstract description 9
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 239000007791 liquid phase Substances 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 4
- 239000011258 core-shell material Substances 0.000 abstract description 2
- 238000011112 process operation Methods 0.000 abstract description 2
- 231100000614 poison Toxicity 0.000 abstract 1
- 230000007096 poisonous effect Effects 0.000 abstract 1
- 230000007847 structural defect Effects 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000002135 nanosheet Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002341 toxic gas Substances 0.000 description 3
- 238000004073 vulcanization Methods 0.000 description 3
- 229910000846 In alloy Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- AQMRBJNRFUQADD-UHFFFAOYSA-N copper(I) sulfide Chemical compound [S-2].[Cu+].[Cu+] AQMRBJNRFUQADD-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical compound [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及采用单源分子前驱体制备高品质硫化铟铜的方法。本发明是将氯化铜和氯化铟粉末混合,配成溶液,将二乙基二硫代氨基甲酸钠粉末配成溶液,将前者在搅拌下缓慢加入后者,沉淀物抽虑,干燥,将所得物放入高压釜中,加入乙醇作为溶剂,将高压釜密封后置于电烘箱中,加热后自然冷却,用去离子水和无水乙醇清洗,干燥后即得到黑色硫化铟铜粉末。本发明解决了气相法和液相法存在的设备昂贵、工艺操作复杂、产率低,以及多源前驱体在溶剂中的溶解度有较大差别所导致产品的组成内外不均匀,形成核-壳结构等缺陷。本发明原材料便宜、易得,无有毒气体H2S和真空环境,工艺简单,具有海胆状形貌的、结晶程度高的纯四方相硫化铟铜。
The invention relates to a method for preparing high-quality indium copper sulfide by using a single-source molecular precursor. In the present invention, copper chloride and indium chloride powder are mixed to make a solution, and sodium diethyldithiocarbamate powder is made into a solution, the former is slowly added to the latter under stirring, the precipitate is filtered, dried, and the The resultant was put into an autoclave, and ethanol was added as a solvent. The autoclave was sealed and placed in an electric oven. After heating, it was naturally cooled, washed with deionized water and absolute ethanol, and dried to obtain black copper indium sulfide powder. The present invention solves the problems of expensive equipment, complex process operation, low yield, and large difference in solubility of multi-source precursors in solvents in the gas-phase method and liquid-phase method, resulting in uneven product composition and core-shell formation. structural defects. The invention has cheap and easy-to-obtain raw materials, no poisonous gas H 2 S and vacuum environment, simple process, pure tetragonal indium copper sulfide with sea urchin shape and high crystallization degree.
Description
技术领域technical field
本发明涉及一种太阳能电池材料高品质硫化铟铜的制备方法,属于新型功能材料领域,特别涉及采用单源分子前驱体制备高品质硫化铟铜的方法。The invention relates to a method for preparing high-quality indium copper sulfide as a solar cell material, belonging to the field of new functional materials, and in particular to a method for preparing high-quality indium copper sulfide by using a single-source molecular precursor.
背景技术Background technique
硫化铟铜(CuInS2)是一种直接带隙半导体材料,其禁带宽度为1.50eV,接近太阳能电池材料的最佳禁带宽度(1.45eV);其光吸收系数(6×105cm-1)是现有的太阳能电池材料中最高的,这对于太阳能电池基区光子的吸收、少数载流子的收集是非常有利的,可使薄膜做得很薄,从而降低成本。此外,CuInS2可制得高质量的p型和n型薄膜,易于制成同质结,其同质结太阳能电池的理论转换效率在28%~32%,这在所有光伏器件中是最高的(例如,Si:24%,GaAs:28%,CuInSe2:20%)。因此,CuInS2被认为是一种最有前途的太阳能电池材料。但是,CuInS2材料的成分和光电特性对工艺过程敏感,这是影响CuInS2薄膜太阳能电池成品率问题的主要因素,成品率不高是制约其产业化发展的主要问题。Copper indium sulfide (CuInS 2 ) is a direct band gap semiconductor material with a band gap of 1.50eV, which is close to the optimal band gap (1.45eV) of solar cell materials; its light absorption coefficient (6×10 5 cm - 1 ) It is the highest among the existing solar cell materials, which is very beneficial to the absorption of photons in the solar cell base area and the collection of minority carriers, and can make the film very thin, thereby reducing the cost. In addition, CuInS 2 can produce high-quality p-type and n-type thin films, and it is easy to make a homojunction. The theoretical conversion efficiency of its homojunction solar cells is 28% to 32%, which is the highest among all photovoltaic devices. (eg, Si: 24%, GaAs: 28%, CuInSe 2 : 20%). Therefore, CuInS2 is considered as one of the most promising solar cell materials. However, the composition and photoelectric properties of CuInS 2 materials are sensitive to the process, which is the main factor affecting the yield of CuInS 2 thin film solar cells, and the low yield is the main problem restricting its industrialization development.
在本发明之前,硫化铟铜的制备方法主要有气相法和液相法两大类。气相法包括化学气相沉积法、真空蒸发法和Cu-In预制膜硫化法等;其中,化学气相沉积法和真空蒸发法需要采用昂贵复杂的真空***、工艺操作复杂、产率低,成本高,不利于工业化生产;而Cu-In预制膜硫化法制造的产品中总含有少量的CuS、Cu2S、In2S3或CuIn3S5等杂质相(这是因为在Cu-In二元***中不存在Cu/In比为1∶1的合金或金属间化合物,硫化法采用的Cu-In合金或Cu/In层在实际中很难做到Cu/In比为1∶1),难以用于制造高效率的光伏器件。液相法包括共沉淀法、水热法和溶剂热法等,但现有液相法基本上采用的都是多源前驱体。由于硫化亚铜和硫化铟在水及其它一些溶剂中的溶解度有较大差别,硫化亚铜和硫化铟往往一个先沉积、另一个后沉积,导致产品的组成内外不均匀,甚至形成核-壳结构等,难以满足制造高效率的光伏器件对高纯度原料的要求。Before the present invention, the preparation methods of indium copper sulfide mainly include gas phase method and liquid phase method. Vapor phase methods include chemical vapor deposition, vacuum evaporation, and Cu-In prefabricated film vulcanization; among them, chemical vapor deposition and vacuum evaporation require expensive and complex vacuum systems, complex process operations, low yields, and high costs. It is not conducive to industrial production; and the products made by Cu-In prefabricated film vulcanization method always contain a small amount of impurity phases such as CuS, Cu 2 S, In 2 S 3 or CuIn 3 S 5 (this is because in the Cu-In binary system There is no Cu/In alloy or intermetallic compound with a Cu/In ratio of 1:1, and the Cu-In alloy or Cu/In layer used in the vulcanization method is difficult to achieve a Cu/In ratio of 1:1 in practice), and it is difficult to use for the manufacture of high-efficiency photovoltaic devices. Liquid-phase methods include co-precipitation, hydrothermal and solvothermal methods, but the existing liquid-phase methods basically use multi-source precursors. Due to the large difference in the solubility of cuprous sulfide and indium sulfide in water and some other solvents, cuprous sulfide and indium sulfide are often deposited first, and the other is deposited later, resulting in uneven composition of the product, and even the formation of a core-shell structure, etc., it is difficult to meet the requirements of high-purity raw materials for the manufacture of high-efficiency photovoltaic devices.
发明内容Contents of the invention
本发明的目的就在于克服上述缺陷,研制一种采用单源分子前驱体制备高品质硫化铟铜的方法。The purpose of the present invention is to overcome the above-mentioned defects and develop a method for preparing high-quality indium copper sulfide using a single-source molecular precursor.
本发明的技术方案是:Technical scheme of the present invention is:
采用单源分子前驱体制备高品质硫化铟铜的方法,其主要技术步骤如下:The main technical steps of the method for preparing high-quality indium copper sulfide using a single-source molecular precursor are as follows:
(1)将氯化铜和氯化铟两种粉末混合,加水溶解,配成溶液;(1) Mix two kinds of powders of copper chloride and indium chloride, add water to dissolve, and make a solution;
(2)将二乙基二硫代氨基甲酸钠粉末,加水溶解,配成溶液;(2) Sodium diethyldithiocarbamate powder is dissolved in water to form a solution;
(3)将步骤(1)配制的氯化铜和氯化铟混合溶液在搅拌下缓慢加入步骤(2)配制的二乙基二硫代氨基甲酸钠溶液,并在室温下保持搅拌一段时间,然后将沉淀物抽虑,在60℃干燥,即得到单源分子前驱体CuIn-(DDTC)5;(3) Slowly add the mixed solution of copper chloride and indium chloride prepared in step (1) to the sodium diethyldithiocarbamate solution prepared in step (2) under stirring, and keep stirring at room temperature for a period of time, then Filter the precipitate and dry it at 60°C to obtain the single-source molecular precursor CuIn-(DDTC) 5 ;
(4)将单源分子前驱体CuIn-(DDTC)5放入高压釜中,再加入乙醇作为溶剂;(4) Put the single-source molecular precursor CuIn-(DDTC) 5 into the autoclave, and then add ethanol as a solvent;
(5)将高压釜密封后置于电烘箱中,在180-190℃下加热12-36小时,停止加热后自然冷却;(5) Place the autoclave in an electric oven after sealing it, heat it at 180-190° C. for 12-36 hours, stop heating and cool it naturally;
(6)将步骤(5)中所得沉淀物抽虑,用去离子水和无水乙醇清洗数次,再在60℃干燥后即得到黑色硫化铟铜粉末。(6) Filter the precipitate obtained in step (5), wash it several times with deionized water and absolute ethanol, and then dry it at 60° C. to obtain black copper indium sulfide powder.
本发明的制备方法具有以下优点:原材料便宜、易得,无需采用有毒气体H2S和真空环境,生产设备和工艺相对简单,反应温度和能耗较低,并且产品是内外组成均匀、符合化学计量比的(即Cu∶In∶S=1∶1∶2)、具有海胆状形貌的、结晶程度高的纯四方相硫化铟铜,可用于制造高效率的光伏器件。The preparation method of the present invention has the following advantages: raw materials are cheap and easy to obtain, no need to use toxic gas H 2 S and vacuum environment, relatively simple production equipment and process, low reaction temperature and energy consumption, and the product is uniform in internal and external composition and conforms to chemical Pure tetragonal indium copper sulfide with stoichiometric ratio (ie Cu:In:S=1:1:2), sea urchin-like morphology, and high degree of crystallization can be used to manufacture high-efficiency photovoltaic devices.
本发明的优越之处在下面将进一步进行阐述。The advantages of the present invention will be further elaborated below.
附图说明Description of drawings
图1--本发明中实施例1所制产品的X-射线衍射图。Fig. 1--the X-ray diffraction figure of the product made in embodiment 1 among the present invention.
图2--本发明中实施例1所制产品的场发射扫描电镜照片。Fig. 2--field emission scanning electron micrograph of the product manufactured in Example 1 of the present invention.
图3--本发明中实施例2所制产品的X-射线衍射图。Fig. 3--X-ray diffraction figure of the product made in embodiment 2 among the present invention.
图4--本发明中实施例2所制产品的场发射扫描电镜照片。Fig. 4--field emission scanning electron micrograph of the product manufactured in Example 2 of the present invention.
图5--本发明中实施例3所制产品的X-射线衍射图。Fig. 5--the X-ray diffraction pattern of the product made in embodiment 3 of the present invention.
图6--本发明中实施例3所制产品的场发射扫描电镜照片。Fig. 6--field emission scanning electron micrograph of the product manufactured in Example 3 of the present invention.
具体实施方式Detailed ways
本发明的设计思路:Design idea of the present invention:
单源分子前驱体(单个反应物分子中包含了形成最终产物所需要的所有元素)在控制合成多元金属硫化物纳米材料方面显示出独有特性。首先,与多源前驱体法相比,单源分子前驱体法更容易控制产品的化学组成。这是由于一些单源分子前驱体本身就含有(M1M2)-Sx(其中,M代表金属离子)“无机核”,它们分解时一般会同时产生(M1M2)-Sx晶核,随后这些晶核在相同的条件下生长,成为组分均匀、粒度分布窄的多元金属硫化物纳米晶。第二,由于单源分子前驱体具有多样性、易调控、可裁剪、分解温度低等特点,将之置于常压或高压热的溶剂中进行热解或在一定的气氛中进行灼烧,可以制备一些传统合成方法难以或无法得到的特殊价态、晶相和形貌的产品。我们研究表明:CuCl2·2H2O、InCl3·4H2O和Na-DDTC可以在水溶液中形成CuIn-(DDTC)5,该化合物中含有(CuIn)-S2“无机核”,可以用作合成CuInS2的单源分子前驱体。Single-source molecular precursors (a single reactant molecule containing all the elements needed to form the final product) have shown unique properties in the controlled synthesis of multinary metal sulfide nanomaterials. First, compared with the multi-source precursor method, the single-source molecular precursor method is easier to control the chemical composition of the product. This is because some single-source molecular precursors themselves contain (M 1 M 2 )-S x (wherein, M represents metal ion) "inorganic core", and they generally produce (M 1 M 2 )-S x at the same time when they decompose Then these crystal nuclei grow under the same conditions to become multinary metal sulfide nanocrystals with uniform composition and narrow particle size distribution. Second, because the single-source molecular precursor has the characteristics of diversity, easy regulation, tailoring, and low decomposition temperature, it can be pyrolyzed in a normal pressure or high pressure hot solvent or burned in a certain atmosphere. Products with special valence, crystal phase and morphology that are difficult or impossible to obtain by traditional synthesis methods can be prepared. Our research shows that: CuCl 2 ·2H 2 O, InCl 3 ·4H 2 O and Na-DDTC can form CuIn-(DDTC) 5 in aqueous solution, the compound contains (CuIn)-S 2 "inorganic core", which can be used As a single-source molecular precursor for the synthesis of CuInS 2 .
因此,本发明即按照此思路发明的。下面详细说明本发明的实施细节和过程。Therefore, the present invention is invented according to this thinking. The implementation details and process of the present invention will be described in detail below.
实施例1:Example 1:
1.分别称取4mmol的氯化铜和氯化铟粉末,将两种固体粉末混合,加水溶解,配成200mL溶液;2.称取20mmol二乙基二硫代氨基甲酸钠(简称:Na-DDTC)粉末,加水溶解,配成200mL溶液;3.将步骤(1)配制的氯化铜和氯化铟混合溶液在搅拌下缓慢加入步骤(2)配制的Na-DDTC溶液,并在室温下保持搅拌5小时,然后将所得沉淀抽虑,并放入烘箱中在60℃干燥12小时,即得到前驱体CuIn-(DDTC)5;4.取0.5g前驱体CuIn-(DDTC)5放入容量为40mL的聚四氟乙烯衬里的高压釜中,再加入32mL乙醇作为溶剂,将高压釜密封后置于电烘箱中,在180℃下加热12小时,然后停止加热,让其自然冷却至室温,将所得沉淀抽滤,用去离子水和无水乙醇清洗数次,再在60℃下干燥6小时,即得到黑色硫化铟铜粉末。1. Weigh 4mmol of copper chloride and indium chloride powder respectively, mix the two solid powders, add water to dissolve, and make a 200mL solution; 2. Weigh 20mmol of sodium diethyldithiocarbamate (abbreviation: Na-DDTC ) powder, dissolved in water, and made into 200mL solution; 3. Slowly add the mixed solution of copper chloride and indium chloride prepared in step (1) to the Na-DDTC solution prepared in step (2) under stirring, and keep at room temperature Stir for 5 hours, then filter the resulting precipitate, put it in an oven and dry it at 60°C for 12 hours to obtain the precursor CuIn-(DDTC) 5 ; 4. Take 0.5g of the precursor CuIn-(DDTC) 5 and put it into the capacity Into a 40mL autoclave lined with polytetrafluoroethylene, add 32mL of ethanol as a solvent, seal the autoclave and place it in an electric oven, heat it at 180°C for 12 hours, then stop heating, let it cool down to room temperature naturally, The resulting precipitate was suction-filtered, washed several times with deionized water and absolute ethanol, and then dried at 60° C. for 6 hours to obtain black copper indium sulfide powder.
如图1所示:As shown in Figure 1:
采用X-射线粉末衍射仪(Cu Kα辐射,λ=1.5406)测定所制备材料的晶相;试验结果表明:其X-射线衍射峰高而尖锐,且所有衍射峰从左到右分别对应于四方相CuInS2的(112)、(004)、(024)/(220)、(116)/(132)、(224)、(040)/(008)、(136)、(420)晶面,无CuS、Cu2S、In2S3或CuIn3S5等杂质相的衍射峰出现。这说明实施例1所制产品是结晶程度高的纯四方相CuInS2。X-ray powder diffractometer (Cu K α radiation, λ=1.5406 ) to determine the crystal phase of the prepared material; the test results show that the X-ray diffraction peaks are high and sharp, and all diffraction peaks correspond to (112), (004), (024) of tetragonal CuInS 2 from left to right. /(220), (116)/(132), (224), (040)/(008), (136), (420) crystal planes, no CuS, Cu 2 S, In 2 S 3 or CuIn 3 S The diffraction peaks of 5 and other impurity phases appeared. This shows that the product produced in Example 1 is pure tetragonal phase CuInS 2 with a high degree of crystallinity.
如图2所示:as shown in picture 2:
采用场发射扫描电子显微镜(FESEM,15kV)对所制备材料的形貌与尺寸进行观察;试验结果表明:该产品呈海胆球状,海胆球的的直径在2-3μm;而海胆球由纳米片构筑而成,纳米片的厚度在20-35nm。The morphology and size of the prepared material were observed with a field emission scanning electron microscope (FESEM, 15kV); the test results showed that the product was in the shape of a sea urchin ball, and the diameter of the sea urchin ball was 2-3 μm; and the sea urchin ball was constructed of nanosheets Formed, the thickness of the nanosheet is 20-35nm.
此外,采用化学分析和美国NORAN System 7型能谱仪对所制备材料的体相及表面组成进行表征;结果表明:本发明实施例1所制产品的体相和表面组成均为符合化学计量比的CuInS2,即其Cu∶In∶S=1∶1∶2。In addition, chemical analysis and American NORAN System 7 energy spectrometer were used to characterize the bulk phase and surface composition of the prepared material; the results showed that: the bulk phase and surface composition of the product produced in Example 1 of the present invention were in line with the stoichiometric ratio CuInS 2 , that is, its Cu:In:S=1:1:2.
实施例2:Example 2:
1.分别称取4mmol的氯化铜和氯化铟粉末,将两种固体粉末混合,加水溶解,配成200mL溶液;2.称取20mmol二乙基二硫代氨基甲酸钠(简称:Na-DDTC)粉末,加水溶解,配成200mL溶液;3.将步骤(1)配制的氯化铜和氯化铟混合溶液在搅拌下缓慢加入步骤(2)配制的Na-DDTC溶液,并在室温下保持搅拌5小时,然后将所得沉淀抽虑,并放入烘箱中在60℃干燥12小时,即得到前驱体CuIn-(DDTC)5;4.取0.5g前驱体CuIn-(DDTC)5放入容量为40mL的聚四氟乙烯衬里的高压釜中,再加入32mL乙醇作为溶剂,将高压釜密封后置于电烘箱中,在180℃下加热36小时,然后停止加热,让其自然冷却至室温,将所得沉淀抽滤,用去离子水和无水乙醇清洗数次,再在60℃下干燥6小时,即得到黑色硫化铟铜粉末。1. Weigh 4mmol of copper chloride and indium chloride powder respectively, mix the two solid powders, add water to dissolve, and make a 200mL solution; 2. Weigh 20mmol of sodium diethyldithiocarbamate (abbreviation: Na-DDTC ) powder, dissolved in water, and made into 200mL solution; 3. Slowly add the mixed solution of copper chloride and indium chloride prepared in step (1) to the Na-DDTC solution prepared in step (2) under stirring, and keep at room temperature Stir for 5 hours, then filter the resulting precipitate, put it in an oven and dry it at 60°C for 12 hours to obtain the precursor CuIn-(DDTC) 5 ; 4. Take 0.5g of the precursor CuIn-(DDTC) 5 and put it into the capacity Into a 40mL autoclave lined with polytetrafluoroethylene, add 32mL of ethanol as a solvent, seal the autoclave and place it in an electric oven, heat it at 180°C for 36 hours, then stop heating, let it cool down to room temperature naturally, The resulting precipitate was suction-filtered, washed several times with deionized water and absolute ethanol, and then dried at 60° C. for 6 hours to obtain black copper indium sulfide powder.
如图3所示:As shown in Figure 3:
采用X-射线粉末衍射仪(Cu Kα辐射,λ=1.5406)测定所制备材料的晶相;试验结果表明:其X-射线衍射峰高而尖锐,且所有衍射峰从左到右分别对应于四方相CuInS2的(112)、(004)、(024)/(220)、(116)/(132)、(224)、(040)/(008)、(136)、(420)晶面,无CuS、Cu2S、In2S3或CuIn3S5等杂质相的衍射峰出现。这说明实施例2所制产品是结晶程度高的纯四方相CuInS2。X-ray powder diffractometer (Cu K α radiation, λ=1.5406 ) to determine the crystal phase of the prepared material; the test results show that the X-ray diffraction peaks are high and sharp, and all diffraction peaks correspond to (112), (004), (024) of tetragonal CuInS 2 from left to right. /(220), (116)/(132), (224), (040)/(008), (136), (420) crystal planes, no CuS, Cu 2 S, In 2 S 3 or CuIn 3 S The diffraction peaks of 5 and other impurity phases appeared. This shows that the product produced in Example 2 is pure tetragonal phase CuInS 2 with a high degree of crystallinity.
如图4所示:As shown in Figure 4:
采用场发射扫描电子显微镜(FESEM,15kV)对所制备材料的形貌与尺寸进行观察;试验结果表明:该产品呈海胆球状,海胆球的的直径在2-3μm;而海胆球由纳米片构筑而成,纳米片的厚度在20-25nm。The morphology and size of the prepared material were observed with a field emission scanning electron microscope (FESEM, 15kV); the test results showed that the product was in the shape of a sea urchin ball, and the diameter of the sea urchin ball was 2-3 μm; and the sea urchin ball was constructed of nanosheets Formed, the thickness of the nanosheet is 20-25nm.
此外,采用化学分析和美国NORAN System 7型能谱仪对所制备材料的体相及表面组成进行表征;结果表明:本发明实施例1所制产品的体相和表面组成均为符合化学计量比的CuInS2,即其Cu∶In∶S=1∶1∶2。In addition, chemical analysis and American NORAN System 7 energy spectrometer were used to characterize the bulk phase and surface composition of the prepared material; the results showed that: the bulk phase and surface composition of the product produced in Example 1 of the present invention were in line with the stoichiometric ratio CuInS 2 , that is, its Cu:In:S=1:1:2.
实施例3:Example 3:
1.分别称取4mmol的氯化铜和氯化铟粉末,将两种固体粉末混合,加水溶解,配成200mL溶液;2.称取20mmol二乙基二硫代氨基甲酸钠(简称:Na-DDTC)粉末,加水溶解,配成200mL溶液;3.将步骤(1)配制的氯化铜和氯化铟混合溶液在搅拌下缓慢加入步骤(2)配制的Na-DDTC溶液,并在室温下保持搅拌5小时,然后将所得沉淀抽虑,并放入烘箱中在60℃干燥12小时,即得到前驱体CuIn-(DDTC)5;4.取0.5g前驱体CuIn-(DDTC)5放入容量为40mL的聚四氟乙烯衬里的高压釜中,再加入32mL乙醇作为溶剂,将高压釜密封后置于电烘箱中,在190℃下加热36小时,然后停止加热,让其自然冷却至室温,将所得沉淀抽滤,用去离子水和无水乙醇清洗数次,再在60℃下干燥6小时,即得到黑色硫化铟铜粉末。1. Weigh 4mmol of copper chloride and indium chloride powder respectively, mix the two solid powders, add water to dissolve, and make a 200mL solution; 2. Weigh 20mmol of sodium diethyldithiocarbamate (abbreviation: Na-DDTC ) powder, dissolved in water, and made into 200mL solution; 3. Slowly add the mixed solution of copper chloride and indium chloride prepared in step (1) to the Na-DDTC solution prepared in step (2) under stirring, and keep at room temperature Stir for 5 hours, then filter the resulting precipitate, put it in an oven and dry it at 60°C for 12 hours to obtain the precursor CuIn-(DDTC) 5 ; 4. Take 0.5g of the precursor CuIn-(DDTC) 5 and put it into the capacity Into a 40mL autoclave lined with polytetrafluoroethylene, add 32mL of ethanol as a solvent, seal the autoclave and place it in an electric oven, heat it at 190°C for 36 hours, then stop heating, let it cool down to room temperature naturally, The resulting precipitate was suction-filtered, washed several times with deionized water and absolute ethanol, and then dried at 60° C. for 6 hours to obtain black copper indium sulfide powder.
如图5所示:As shown in Figure 5:
采用德国X-射线粉末衍射仪(Cu Kα辐射,λ=1.5406)测定所制备材料的晶相;试验结果表明:其X-射线衍射峰高而尖锐,且所有衍射峰从左到右分别对应于四方相CuInS2的(112)、(004)、(024)/(220)、(116)/(132)、(224)、(040)/(008)、(136)、(420)晶面,无CuS、Cu2S、In2S3或CuIn3S5等杂质相的衍射峰出现。这说明实施例3所制产品是结晶程度高的纯四方相CuInS2。Adopt German X-ray powder diffractometer (Cu K α radiation, λ=1.5406 ) to determine the crystal phase of the prepared material; the test results show that the X-ray diffraction peaks are high and sharp, and all diffraction peaks correspond to (112), (004), (024) of tetragonal CuInS 2 from left to right. /(220), (116)/(132), (224), (040)/(008), (136), (420) crystal planes, no CuS, Cu 2 S, In 2 S 3 or CuIn 3 S The diffraction peaks of 5 and other impurity phases appeared. This shows that the product prepared in Example 3 is pure tetragonal phase CuInS 2 with a high degree of crystallinity.
如图6所示:As shown in Figure 6:
采用场发射扫描电子显微镜(FESEM,15kV)对所制备材料的形貌与尺寸进行观察;试验结果表明:该产品呈海胆球状,海胆球的的直径在2-3μm;而海胆球由纳米片构筑而成,纳米片的厚度在20-35nm。The morphology and size of the prepared material were observed with a field emission scanning electron microscope (FESEM, 15kV); the test results showed that the product was in the shape of a sea urchin ball, and the diameter of the sea urchin ball was 2-3 μm; and the sea urchin ball was constructed of nanosheets Formed, the thickness of the nanosheet is 20-35nm.
此外,采用化学分析和美国NORAN System 7型能谱仪对所制备材料的体相及表面组成进行表征;结果表明:本发明实施例1所制产品的体相和表面组成均为符合化学计量比的CuInS2,即其Cu∶In∶S=1∶1∶2。In addition, chemical analysis and American NORAN System 7 energy spectrometer were used to characterize the bulk phase and surface composition of the prepared material; the results showed that: the bulk phase and surface composition of the product produced in Example 1 of the present invention were in line with the stoichiometric ratio CuInS 2 , that is, its Cu:In:S=1:1:2.
根据本发明得到的硫化铟铜是内外组成均匀、符合化学计量比的(即Cu∶In∶S=1∶1∶2)、海胆状形貌的、结晶程度高的纯四方相CuInS2,具有更加优越的光伏性能,可用于制造高效率的太阳能电池。The copper indium sulfide obtained according to the present invention is a pure tetragonal phase CuInS 2 with a uniform internal and external composition, conforming to the stoichiometric ratio (that is, Cu:In:S=1:1:2), a sea urchin-like appearance, and a high degree of crystallization. More superior photovoltaic performance can be used to manufacture high-efficiency solar cells.
显然,从上述实施步骤、数据、图表分析得知,本发明具有原材料便宜、易得,无需采用有毒气体H2S和真空环境,生产设备和工艺相对简单,反应温度和能耗较低,并且产品是内外组成均匀、符合化学计量比的(即Cu∶In∶S=1∶1∶2)、具有海胆状形貌的、结晶程度高的纯四方相硫化铟铜,可用于制造高效率的光伏器件等特点。Obviously, from the above-mentioned implementation steps, data, and chart analysis, it is known that the present invention has cheap and easy-to-obtain raw materials, does not need to use toxic gas H 2 S and vacuum environment, relatively simple production equipment and process, low reaction temperature and energy consumption, and The product is a pure tetragonal indium copper sulfide with a uniform internal and external composition, a stoichiometric ratio (i.e. Cu:In:S=1:1:2), a sea urchin shape, and a high degree of crystallization, which can be used to manufacture high-efficiency characteristics of photovoltaic devices.
本发明与现有的气相法相比,具有以下优点:(1)无需真空环境,设备便宜、操作简单;(2)无需采用有毒气体H2S,人工操作无需特殊防护措施;(3)反应温度和能耗较低;(4)生产速度快、效率高;(5)产品无CuS、Cu2S、In2S3或CuIn3S5等杂质相污染,具有更加优越的光伏性能。Compared with the existing gas phase method, the present invention has the following advantages: (1) no need for vacuum environment, cheap equipment and simple operation; (2) no need to use toxic gas H 2 S, no special protective measures for manual operation; (3) reaction temperature and low energy consumption; (4) fast production speed and high efficiency; (5) the product is free from impurities such as CuS, Cu 2 S, In 2 S 3 or CuIn 3 S 5 and has superior photovoltaic performance.
本发明与现有的液相法相比,具有以下优点:(1)采用单源分子前驱体,产品的组成内外均匀、且符合化学计量比(即Cu∶In∶S=1∶1∶2),无需进一步高温退火处理;(2)产品为具有海胆状形貌的、结晶程度高的纯四方相硫化铟铜。Compared with the existing liquid-phase method, the present invention has the following advantages: (1) the single-source molecular precursor is adopted, and the composition of the product is uniform inside and outside, and conforms to the stoichiometric ratio (i.e. Cu:In:S=1:1:2) , without further high-temperature annealing treatment; (2) The product is pure tetragonal indium copper sulfide with sea urchin-like morphology and high crystallinity.
本发明请求保护的范围并不局限于上述具体实施方式的描述。The scope of protection claimed in the present invention is not limited to the description of the above specific implementation manners.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910264166A CN101734712A (en) | 2009-12-30 | 2009-12-30 | Method for preparing high-quality copper indium sulfide by employing single-source molecular precursor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910264166A CN101734712A (en) | 2009-12-30 | 2009-12-30 | Method for preparing high-quality copper indium sulfide by employing single-source molecular precursor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101734712A true CN101734712A (en) | 2010-06-16 |
Family
ID=42458826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910264166A Pending CN101734712A (en) | 2009-12-30 | 2009-12-30 | Method for preparing high-quality copper indium sulfide by employing single-source molecular precursor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101734712A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857276A (en) * | 2010-06-21 | 2010-10-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of preparation method of universal nano metal sulfide |
CN103408065A (en) * | 2013-05-28 | 2013-11-27 | 北京工业大学 | A kind of preparation method of ultrafine nanocrystalline Cu2ZnSnS4 |
CN105800673A (en) * | 2016-03-09 | 2016-07-27 | 上海理工大学 | Method for preparing In4SnS8 ultrathin film |
CN111689512A (en) * | 2019-03-13 | 2020-09-22 | 中国科学院上海高等研究院 | In-doped Cu-S-based thermoelectric material and preparation method thereof |
-
2009
- 2009-12-30 CN CN200910264166A patent/CN101734712A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857276A (en) * | 2010-06-21 | 2010-10-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of preparation method of universal nano metal sulfide |
CN103408065A (en) * | 2013-05-28 | 2013-11-27 | 北京工业大学 | A kind of preparation method of ultrafine nanocrystalline Cu2ZnSnS4 |
CN103408065B (en) * | 2013-05-28 | 2016-01-20 | 北京工业大学 | A kind of superfine nano-crystalline Cu 2znSnS 4preparation method |
CN105800673A (en) * | 2016-03-09 | 2016-07-27 | 上海理工大学 | Method for preparing In4SnS8 ultrathin film |
CN111689512A (en) * | 2019-03-13 | 2020-09-22 | 中国科学院上海高等研究院 | In-doped Cu-S-based thermoelectric material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI382095B (en) | Method for producing multi-metal chalcogen compound | |
CN107089683A (en) | A kind of preparation method of molybdenum disulfide/copper sulfide/cuprous nano composite | |
CN101870458B (en) | Preparation method of multi-element metal chalcogen compound, target material and coating material | |
Chen et al. | Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry | |
CN105200520B (en) | One kind prepares Bi2(SexTe1‑x)3The method of single crystal nanoplate | |
CN104016313A (en) | Preparation method of hexagonal copper selenide nanosheets | |
CN102107905A (en) | A kind of preparation method of Cu2ZnSnS4 solar cell material | |
CN101885071A (en) | A kind of preparation method of copper zinc tin selenium nanopowder material | |
CN106395886B (en) | A kind of buergerite Cu2ZnSnS4Nanocrystalline large-scale producing method | |
CN101734712A (en) | Method for preparing high-quality copper indium sulfide by employing single-source molecular precursor | |
CN105967155A (en) | Method for preparing tungsten diselenide nanoflower | |
CN104264211B (en) | High temperature solvothermal preparation method and application of single crystal submicron Cu2ZnSnS4 particles | |
CN102897722B (en) | A kind of solvothermal synthesis method of α-In2Se3 nano curd | |
CN102249199A (en) | Microwave-assisted solvothermal synthesis method of I-III-VI semiconductor material nano-powder | |
CN102689920A (en) | Method for producing copper-tin-zinc-sulfur (CTZS) materials through solvent-thermal synthesis | |
Kim et al. | Solvothermal synthesis and characterization of a CuInTe2 absorber for thin-film photovoltaics | |
Wu et al. | Synthesis of CuInSe2 thin films on flexible Ti foils via the hydrothermally-assisted chemical bath deposition process at low temperatures | |
CN106057973A (en) | Method for preparing solar cell absorbing layer CTS film through oxide nanometer particles | |
CN106098814A (en) | A kind of oxide nano particles prepares the method for solar battery obsorbing layer CTSSe thin film | |
CN103408065B (en) | A kind of superfine nano-crystalline Cu 2znSnS 4preparation method | |
Qing et al. | A facile two-step-heating route to synthesize hierarchical metastable wurtzite Cu2ZnSnS4 microcrystals under the open-air condition | |
CN105084416B (en) | Preparation method of three-dimensional honeycomb CuInS2 nanowire array solar energy absorbing material | |
CN103351022A (en) | A kind of method for preparing CuInS2 nano crystals by solvothermal method with mother liquor | |
CN103601157B (en) | A kind of method that ethanediamine auxiliary polyhydric alcohol based sols synthesis Cu-In-Al-Se is nanocrystalline | |
CN107746076A (en) | A kind of method for preparing the copper nanocrystallite material of four antimony trisulfide three |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100616 |