AU5287601A - High yield vapor phase deposition method for large scale single walled carbon nanotube preparation - Google Patents

High yield vapor phase deposition method for large scale single walled carbon nanotube preparation

Info

Publication number
AU5287601A
AU5287601A AU52876/01A AU5287601A AU5287601A AU 5287601 A AU5287601 A AU 5287601A AU 52876/01 A AU52876/01 A AU 52876/01A AU 5287601 A AU5287601 A AU 5287601A AU 5287601 A AU5287601 A AU 5287601A
Authority
AU
Australia
Prior art keywords
carbon nanotube
deposition method
large scale
vapor phase
high yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU52876/01A
Inventor
Jie Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duke University
Original Assignee
Duke University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duke University filed Critical Duke University
Publication of AU5287601A publication Critical patent/AU5287601A/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
AU52876/01A 2000-01-07 2001-01-05 High yield vapor phase deposition method for large scale single walled carbon nanotube preparation Abandoned AU5287601A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17487400P 2000-01-07 2000-01-07
US60174874 2000-01-07
PCT/US2001/000335 WO2001049599A2 (en) 2000-01-07 2001-01-05 High yield vapor phase deposition method for large scale single walled carbon nanotube preparation

Publications (1)

Publication Number Publication Date
AU5287601A true AU5287601A (en) 2001-07-16

Family

ID=22637890

Family Applications (1)

Application Number Title Priority Date Filing Date
AU52876/01A Abandoned AU5287601A (en) 2000-01-07 2001-01-05 High yield vapor phase deposition method for large scale single walled carbon nanotube preparation

Country Status (7)

Country Link
EP (1) EP1252360A4 (en)
JP (1) JP2003520176A (en)
KR (1) KR20020084087A (en)
CN (1) CN1418260A (en)
AU (1) AU5287601A (en)
CA (1) CA2395807A1 (en)
WO (1) WO2001049599A2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020172767A1 (en) * 2001-04-05 2002-11-21 Leonid Grigorian Chemical vapor deposition growth of single-wall carbon nanotubes
US7572427B2 (en) 2001-07-03 2009-08-11 Facultes Universitaires Notre-Dame De La Paix Catalyst supports and carbon nanotubes produced thereon
GB0216654D0 (en) 2002-07-17 2002-08-28 Univ Cambridge Tech CVD Synthesis of carbon nanoutubes
US6974492B2 (en) 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US7214361B2 (en) * 2002-11-26 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of carbon nanotubes
US6974493B2 (en) 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
GB2399092B (en) * 2003-03-03 2005-02-16 Morgan Crucible Co Nanotube and/or nanofibre synthesis
WO2006041170A1 (en) * 2004-10-15 2006-04-20 Ngk Insulators, Ltd. Method for producing porous structure
US7485600B2 (en) * 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
CA2500766A1 (en) 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
EP1797950A1 (en) * 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process
US8163263B2 (en) 2006-01-30 2012-04-24 Honda Motor Co., Ltd. Catalyst for the growth of carbon single-walled nanotubes
JP5055520B2 (en) * 2006-02-24 2012-10-24 独立行政法人産業技術総合研究所 Porous structure and method for producing the same
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
CN102333906B (en) * 2009-02-27 2015-03-11 应用纳米结构方案公司 Low temperature CNT growth using gas-preheat method
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
AU2010279709A1 (en) 2009-08-03 2012-01-19 Applied Nanostructured Solutions, Llc. Incorporation of nanoparticles in composite fibers
KR101870844B1 (en) 2010-09-14 2018-06-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Glass substrates having carbon nanotubes grown thereon and methods for production thereof
BR112013005529A2 (en) 2010-09-22 2016-05-03 Applied Nanostructured Sols carbon fiber substrates having carbon nanotubes developed therein, and processes for producing them
JP6042314B2 (en) * 2012-12-04 2016-12-14 本田技研工業株式会社 Carbon nanotube growth substrate and manufacturing method thereof
JP6041775B2 (en) * 2013-09-13 2016-12-14 本田技研工業株式会社 Carbon nanotube growth substrate and manufacturing method thereof
JP7254809B2 (en) * 2017-09-18 2023-04-10 ウェスト バージニア ユニバーシティ Catalysts and processes for tunable root-grown multi-walled carbon nanotubes
WO2020027000A1 (en) * 2018-07-31 2020-02-06 株式会社大阪ソーダ Method for producing carbon nanotubes
CN116288241A (en) * 2023-03-21 2023-06-23 温州大学 Preparation method of metal aerogel in-situ grown carbon nano tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713233A (en) * 1985-03-29 1987-12-15 Allied Corporation Spray-dried inorganic oxides from non-aqueous gels or solutions
US4916108A (en) * 1988-08-25 1990-04-10 Westinghouse Electric Corp. Catalyst preparation using supercritical solvent
JP3285614B2 (en) * 1992-07-30 2002-05-27 日本碍子株式会社 Exhaust gas purification catalyst and method for producing the same
US6004436A (en) * 1996-08-16 1999-12-21 The Regents Of The University Of California Processes for the chemical modification of inorganic aerogels
KR100376197B1 (en) * 1999-06-15 2003-03-15 일진나노텍 주식회사 Low temperature synthesis of carbon nanotubes using metal catalyst layer for decompsing carbon source gas

Also Published As

Publication number Publication date
EP1252360A2 (en) 2002-10-30
EP1252360A4 (en) 2006-07-26
WO2001049599A3 (en) 2002-03-07
KR20020084087A (en) 2002-11-04
CA2395807A1 (en) 2001-07-12
CN1418260A (en) 2003-05-14
JP2003520176A (en) 2003-07-02
WO2001049599A2 (en) 2001-07-12

Similar Documents

Publication Publication Date Title
AU5287601A (en) High yield vapor phase deposition method for large scale single walled carbon nanotube preparation
AU2001258109A1 (en) Process for preparing carbon nanotubes
AU2003222700A1 (en) Process for preparing carbon nanotubes
AU2001226100A1 (en) Method for high yield reticle formation
AU2001241727A1 (en) Process for producing para-xylene
AU2002258722A1 (en) Chemical vapor deposition growth of single-wall carbon nanotubes
GB2353138B (en) Method for fabricating carbon nanotube field emitter by electrophoretic deposition
AU2002357360A1 (en) Method for low temperature synthesis of single wall carbon nanotubes
AU2003282383A1 (en) A process for the preparation of high purity escitalopram
AU2464401A (en) Process for the preparation of oligomeric compounds
AU2001239960A1 (en) Method for producing desired tantalum phase
AU2001267708A1 (en) Novel process for preparing crystalline particles
AU2002223830A1 (en) Method for separating a phase transfer catalyst by means of a membrane
AU6432800A (en) Process for the synthesis of citalopram
AU2001262226A1 (en) Process for the preparation of sterically hindered aryloxyamines
AU2001268589A1 (en) Cross linked solid supports for solid phase synthesis
AU7556400A (en) Process for producing alkyd resin
AU2001236108A1 (en) Process for preparing unsaturated compounds by pyrolysis
AU2002323358A1 (en) Methods for preparing purified prostaglandin e synthase
AU2001289303A1 (en) Process for producing crystalline tagatose
AU2002229648A1 (en) A process for the preparation of citalopram
AU7135600A (en) Methanol process for natural gas conversion
AU2002228008A1 (en) Process for preparing fluorinated organic compounds
AU2001255460A1 (en) Process for preparing lipid ii
AU2001281790A1 (en) Method for formulating organic compounds

Legal Events

Date Code Title Description
MK6 Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase